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The Walrasian Model’s Assumptions

The following assumptions are implicit rather than explicit in the Walrasian model we’ve

developed:

(1) Each individual unit (each household or firm) is a price-taker — i.e., each one behaves

as if its own actions will not affect prices. We might expect this to hold, for example, if there

are many buyers and sellers in each market. How many? Some empirical evidence suggests

that the number doesn’t have to be very large, perhaps as few as five or ten on each side of

the market in many cases. Note, though, that this will also depend on what is “the market.”

Strictly speaking, each market would have to be for a single, homogeneous good — a market

in which consumers are indifferent between goods sold by any two sellers.

(2) There are complete markets (a market and a price for each commodity) and com-

plete and accurate information about each market (each participant knows the price

and the characteristics — e.g., the quality — of each good).

(3) There are no externalities.

When we use an economic model to obtain understanding, explanation, or prediction, we

don’t expect the model to provide any of these perfectly. But we expect the model to give us

better explanations or predictions if the above assumptions are approximately satisfied when

we apply the model. While we don’t expect the actual economy to be precisely in equilibrium,

we expect the model’s equilibrium to be “near” the economy’s actual state. Therefore there’s

an additional assumption that’s important:

(4) The underlying data (preferences, technology, etc.) are not changing too rapidly, so

that stability issues are not very important and we can expect to actually be “near” an

equilibrium.

The remainder of the course will consist almost entirely of discarding one after another of

the first three assumptions: first developing the model when participants aren’t price-takers;

then when there are incomplete markets (in particular, incomplete markets for dealing with

uncertainty and time); and then when there are externalities. We begin by studying the

core, a notion of bargaining equilibrium in which the participants don’t take prices as given.

We’ll also make brief mention of the fourth assumption as well.



The Core:

Edgeworth’s “Recontracting” or Bargaining Equilibrium

If there are only two consumers in the market, each one’s potential to influence the prices is

obvious. It’s therefore unsatisfactory to assume, as the Walrasian equilibrium does, that each

consumer ignores this potential and simply behaves as a price-taker. Edgeworth asked what the

outcome would be if we don’t assume that markets and prices are used. Suppose we assume only

that resources are privately owned and controlled and that the traders will “bargain” with one

another. Can we say anything about which allocations will or will not occur? In other words, which

allocations could be viable equilbria of a bargaining process? Edgeworth analyzed this question

for two goods and an arbitrary number of traders. Debreu & Scarf generalized to any number of

goods, and others have generalized the Debreu & Scarf result.

Just as we abstracted away from the dynamics of changing prices when we analyzed market equi-

librium, here we abstract away from the dynamic process of bargaining, focusing only on those

situations from which no (further) bargaining will occur. And of course we begin with the simplest

case, the “Edgeworth Box” situation: exchange only (no production), two goods, and two people.

At what allocations will the traders agree to trade, thereby moving to a different allocation? A first

answer: they will trade if they can both gain from trading — i.e., if a Pareto improvement exists.

Therefore, an “equilibrium” must at least be Pareto efficient. Are all Pareto efficient allocations

equilibria, so that the two notions of bargaining equilibrium and Pareto efficiency coincide? No:

neither trader will agree to a proposed allocation that makes him worse off than he would have

been if he had not traded — i.e., to an allocation that makes him worse off than he is at the bundle

he owns initially.

In the two-trader case, then, a reasonable definition of bargaining equilibrium is as follows:

An allocation x̂ = (x̂i)i∈N is a bargaining equilibrium for N = {1, 2} if

(1) x̂ is Pareto efficient, and

(2) For each i: ui(x̂i) = ui(̊xi).

An allocation that satisfies (2) is said to be individually acceptable or individually rational.

The bargaining equilibria in the two-trader case are exactly the allocations that Edgeworth called

the “recontracting” equilibria. Today we call them the core allocations. In the Edgeworth Box they

form the “contract curve.” (Many economists use the term “contract curve” to mean the locus of

all the Pareto allocations in the box, typically a much larger set.) Note that in this two-person

case, with increasing preferences, every Walrasian equilibrium allocation is in the core (because a

Walrasian allocation is Pareto efficient and individually rational), but almost all core allocations



are not Walrasian equilibria for the given distribution of initial ownership.

Example 1: On the following page is a simple example in which the core of a two-person economy

is determined.

In the definition of the two-person core given above, we can paraphrase Conditions (1) and (2) as

follows:

(1) There is no way for the two individuals together to improve upon the allocation x̂, and

(2) There is no way for either individual, by himself, to unilaterally improve upon x̂.

Now suppose there are n consumers, indexed by i ∈ N = {1, . . . , n}, with utility functions ui and

initial bundles x̊i. We say that the core is the set of all allocations that are feasible and cannot be

improved upon by any “coalition” of members of N .

Definition 1: A coalition is a nonempty subset of N . Let x = (xi)i∈N ∈ Rnl
+ be an allocation. A

coalition S can unilaterally improve upon x if there is an allocation to S — say, (x̃i)i∈S — that is

both

(a) feasible for S:
∑

i∈S x̃i 5
∑

i∈S x̊i and

(b) a Pareto improvement for S: ui(x̃
i) = ui(xi) for all i ∈ S, and ui(x̃

i) > ui(xi) for some i.

Definition 2: The core of an economy is the set of all allocations that are feasible and that cannot

be improved upon by any coalition.

In the language of Definition 1, the Pareto allocations are the feasible allocations that can’t be

improved upon by the coalition of all individuals, and the individually rational allocations are the

ones that can’t be unilaterally improved upon by any of the one-person coalitions. Therefore all

core allocations are both Pareto efficient and individually rational, just as in the two-person case.

But as Example 2 below shows, when n > 2 there are generally allocations that are both Pareto

efficient and individually rational but which are nevertheless not in the core — because they can

be improved upon by some intermediate-sized coalition, one that includes more than one person

but not everyone.





Example 2: This example shows that when n > 2 the requirement that no coalition be able

to improve upon (x̂i)n1 is generally a stronger requirement than merely requiring Pareto efficiency

(“N cannot improve”) and individual rationality (“no {i} can improve”).

N = {1, 2, 3} ∀i ∈ N : ui(xi) = xi
1x

i
2

x̊1 = (19, 1) ∴ ů1 = 19

x̊2 = (1, 19) ∴ ů2 = 19

x̊3 = (10, 10) ∴ ů3 = 100∑
x̊i = (30, 30)

The following allocation (x̂i)31 is Pareto efficient and individually rational:

x̂1 = x̂2 = (9, 9) ∴ û1 = û2 = 81

x̂3 = (12, 12) ∴ û3 = 144∑
x̂i = (30, 30)

But the coalition S = {1, 2} can unilaterally improve upon (x̂i)31 as follows:

x̃1 = x̃2 = (10, 10) ∴ ũ1 = ũ2 = 100 > 81.

Therefore (x̂i)31 is not in the core.

Exercise: Exercise #5.1 in the Exercise Book asks you to find all the core allocations for this

example.



Walrasian Equilibria are in the Core

In our examples, we’ve noted in every case that the Walrasian equilibrium allocation has been

in the core — i.e., it’s been one of the possible “bargaining equilibria” of the economy. The

theorem on the following page establishes that this is true under very general conditions: the

consumers’ preferences simply need to be locally nonsatiated. But this shouldn’t be surprising:

local nonsatiation is also the only assumption needed to establish the First Welfare Theorem,

which says that if you can make a Pareto improvement on a proposed allocation, then the proposed

allocation can’t be the outcome of a Walrasian equilibrium. In fact, that’s exactly the way our

proof proceeded: we assumed that the proposed equilibrium allocation is not Pareto (i.e., it can

be improved upon), and then showed that the assumed improvement could not be feasible, a

contradiction — the assumed improvement can’t actually be accomplished.

To establish that a Walrasian allocation is more than just Pareto optimal, and in fact is actually

in the core, we proceed in exactly the same way: we assume that the proposed allocation can

be improved upon by some coalition — but not necessarily by the coalition consisting of all the

traders — and show in the same way as before that the improvement could not be feasible for the

coalition, using just its own resources. In other words, we show that an assumed improvement by

any coalition can’t actually be accomplished with the resources available to it, and therefore the

proposal is in the core.

Note that the proof is identical to our proof of the First Welfare Theorem except that an arbitrary

coalition S replaces the specific coalition N consisting of all traders, just as the above discussion

suggests.







The Utility Frontier

Any allocation (xi)n1 to a set N = {1, . . . , n} of individuals with utility functions u1(·), . . . , un(·)
yields a profile (u1, . . . , un) of resulting utility levels, as depicted in Figure 1 for the case n = 2.

(Throughout this set of notes, in order to distinguish between utility functions and utility levels,

I’ll use superscripts for the functions and subscripts for the resulting levels, as I’ve done in the

preceding sentence and in Figure 1.) Let’s formally define the function that accomplishes this:

U : Rn`
+ → Rn is defined by U

(
(xi)N

)
=
(
u1(x1), . . . , un(xn)

)
(∗)

Figure 1

Let F denote the set of feasible allocations — i.e., those that satisfy
∑n

1 xi 5 x̊. The set of

feasible utility profiles is the image under U of the set of all feasible allocations, i.e., U(F):

Figure 2



The Pareto efficient allocations are clearly the ones that get mapped by U to the “northeast”

part of the boundary of the set of feasible utility profiles. (More accurately, to those points u on

the boundary of U(F) for which there are no other points in U(F) lying to the northeast). This

northeast part of the set U(F) is called the utility frontier, which we’ll denote by UF. It consists

of the utility profiles u = (u1, . . . , un) that are maximal in U(F) with respect to the preorder =

on Rn:

u = (u1, . . . , un) ∈ UF if and only if

u ∈ U(F) and there is no u′ ∈ U(F) that satisfies ∀i : u′i = ui & ∃i : u′i > ui .

Equivalently, UF is the image under U of the set of Pareto allocations:

UF = U(P), where P is the set of Pareto allocations in Rn`
+ .

Figure 3

Note that the alternatives over which the individuals have utility functions needn’t be allocations:

we could replace the set Rn`
+ of allocations with an arbitrary set X of alternatives x, and (∗) would

become

U : X → Rn is defined by U(x) =
(
u1(x), . . . , un(x)

)
Figure 2 would still look the same: it would be U(X), or U(F), the image under U of either X or

F ; and Figure 3 would be the same, the image under U of the set of Pareto efficient alternatives.

The utility frontier is a surface in Rn, and it could be expressed as the set of profiles (u1, . . . , un)

that satisfy the equation h(u1, . . . , un) = 0 for some function h, or

u1 = g(u2, . . . , un) (∗∗)

for some function g. In the equation (∗∗), the function g tells us, for given utility levels u2, . . . , un

for n − 1 individuals, what is the maximum utility level u1 that’s feasible for the remaining

individual. In other words, g is the value function for the problem (P-Max), in which the utility
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levels u2, . . . , un are parameters and we solve for the allocation (xi)n1 in which x1 maximizes u1(·)
subject to all other individuals i = 2, . . . , n receiving at least the utility level ui (recall that we’re

using ui to denote utility functions and ui to denote utility levels !):

max
(xi

k)∈R
nl
+

u1(x1)

subject to xik = 0, i = 1, ..., n, k = 1, ..., l
n∑

i=1

xik 5 x̊k, k = 1, ..., l

ui(xi) = ui, i = 2, ..., n.

(P-Max)

The Solution Function and the Value Function

for a Maximization Problem

Consider the maximization problem

max
x

f(x;α) subject to G(x;α) 5 0. (P)

Note that we’re maximizing over x and not over α — x is a variable in the problem (typically a

vector or n-tuple of variables) and α is a parameter (typically a vector or m-tuple of parameters).

The parameters may appear in the objective function and/or the constraints, if there are any

constraints. We associate the following two functions with the maximization problem (P):

the solution function: x = x(α), and

the value function: v(α) := f(x(α)) .

The solution function gives the solution x as a function of the parameters; the value function gives

the value of the objective function as a function of the parameters.

Example 1: The consumer maximization problem (CMP) in demand theory,

max
x∈R`

+

u(x) subject to p · x 5 w.

Here α is the (`+ 1)-tuple (p;w) consisting of the price-list p and the consumer’s wealth w.

The solution function is the consumer’s demand function x(p;w) .

The value function is the consumer’s indirect utility function v(p;w) = u(x(p;w)) .

3



Example 2: The firm’s cost-minimization (i.e., expenditure-minimization) problem,

min
x∈R`

+

E(x; w) = w · x subject to F (x) = y.

Here F is the firm’s production function; x is the `-tuple of input levels that will be employed;

E(x; w) is the resulting expenditure the firm will incur; and α is the (`+ 1)-tuple (y; w) consisting

of the proposed level of output, y, and the `-tuple w of input prices.

The solution function is the firm’s input demand function x(y; w) .

The value function is the firm’s cost function C(y; w) = E(x(y; w); w) .

Example 3: The Pareto problem (P-Max),

max
x∈F

u1(x1) subject to u2(x2) = u2 , . . . , u
n(xn) = un,

where F is the feasible set {x ∈ Rn`
+ |
∑n

1 xi 5 x̊} . Here α is the (n−1)-tuple of utility levels

u2, . . . , un.

The solution function is x(u2, . . . , un), which gives the Pareto allocation as a

function of the utility levels u2, . . . , un .

The value function is u1(x(u2, . . . , un)) , which gives the maximum attainable

utility level u1 as a function of the utility levels u2, . . . , un .

The value function therefore describes the utility frontier for the economy ((ui)n1 , x̊), as depicted

in Figure 2.
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A Core Example with Four Consumers

In this example we’re going to have four consumers, indexed by i ∈ N = {1, 2, 3, 4}. The

two “odd” consumers (i = 1, 3) will be identical and the two “even” consumers (i = 2, 4) will

be identical. The example will show how it is that adding more consumers to the economy

can remove some allocations from the core, in a certain sense, thus shrinking the core to a

smaller set of allocations.

Each consumer in the example has the same utility function, u(x, y) = xy. The two odd

consumers are each endowed with one unit of the y-good and none of the x-good, and each

of the even consumers is endowed with one unit of the x-good and none of the y-good:

(̊x1, ẙ1) = (̊x3, ẙ3) = (0, 1) and (̊x2, ẙ2) = (̊x4, ẙ4) = (1, 0).

The allocations for this economy are in R8
+, so we’re not going to get very far trying to use an

Edgeworth box-type diagram, which will be six-dimensional. But we can exploit the fact that

there are only two distinct “types” of consumer, the odds and the evens, by first analyzing

an economy in which there is only one consumer of each type, say just i = 1 and i = 2. In

this two-person economy it’s easy to see that the Pareto allocations are the ones in which

x1 = y1 and x2 = y2 — i.e., the diagonal of the Edgeworth box (EB). The unique Walrasian

equilibrium (WE) has px = py and each consumer receives the bundle (xi, yi) = (1
2
, 1
2
). See

Figure 1.

Now returning to the four-person economy, the Walrasian equilibrium still has px = py, and

each consumer still receives the bundle (xi, yi) = (1
2
, 1
2
). The Pareto allocations are still the

ones in which xi = yi for each consumer. So the Edgeworth box is still somewhat useful

here: in the WE, each consumer of a given type receives the bundle he would receive in the

Edgeworth box economy, and the Pareto set is similar to the Pareto set in the EB economy.

What about the core in the two economies? In the two-person economy, with one consumer

of each type, the core is the entire diagonal of the box. In particular, the lower-left-corner

allocation, in which (x1, y1) = (0, 0) and (x2, y2) = (1, 1), is in the core. In the corresponding

four-person allocation, both odd consumers receive (0, 0) and both even consumers receive

(1, 1). We’ll denote this allocation by (x̂i, ŷi)N , where N = {1, 2, 3, 4}. See Figure 1. Is

(x̂i, ŷi)N in the core of the four-person economy? Let’s figure it out.

(The corner allocation, in which the odd consumers each get (0, 0), may seem kind of extreme.

Before we’re done we’ll see that the argument we’re going to develop applies to plenty of not-

so-extreme allocations too. In fact, to all but the WE allocation, where each (xi, yi) = (1
2
, 1
2
)!)



Figure 1

How can we show that a given allocation, such as (x̂i, ŷi)N , is in the core, or alternatively

that it’s not in the core? If we can find just one coalition S that can unilaterally improve on

(x̂i, ŷi)N , then it’s not in the core. Conversely, in order to show that the allocation is in the

core, we have to show that none of the fifteen possible coalitions can unilaterally improve on

it.

It’s clear that the four-person “coalition of the whole,” S = N , can’t improve on (x̂i, ŷi)N ,

because (x̂i, ŷi)N is Pareto efficient. It’s also clear that none of the one-person coalitions

{1}, {2}, {3}, or {4} can improve, because each consumer is receiving at least as much utility

in (x̂i, ŷi)N as she receives by just consuming her initial bundle.

For most of the remaining coalitions (i.e., the two- and three-person coalitions), it’s also not

too difficult to show that the coalition can’t improve on (x̂i, ŷi)N . For example, the coalition

S = {1, 3} consisting of just the two odd consumers owns two units of the y-good but none

of the x-good, so even though each of these two consumers receives ui = 0 in (x̂i, ŷi)N , they

can’t do any better than that with just their own resources.

However, there’s a more systematic way to determine whether coalitions can improve on a

given allocation such as (x̂i, ŷi)N : we can use the coalition’s utility frontier. Recall from our

Utility Frontier notes that we used the notation F to denote the set of feasible allocations

for the set N of all the consumers — i.e., the allocations that satisfy
∑

i∈N xi 5 x̊. We used

P to denote the set of Pareto allocations, and we used U to denote the function that maps

allocations (xi)N to their resulting utility profiles (ui)N = U((xi)N) = (u1(x1), . . . , un(xn)).

In the space Rn of utility profiles, U(F) is the set of feasible utility profiles — the image

under U of the set of feasible allocations — and U(P) is the utility frontier, the image under

U of the set of Pareto efficient allocations.
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Let’s replace the set N everywhere in the preceding paragraph with a coalition S ⊆ N , and

write FS for the set of allocations (xi)S to S that are feasible for S — i.e.,
∑

i∈S x
i 5 x̊S —

and write PS for the set of allocations to S that are Pareto efficient for S using just its own

resources. Now consider an allocation (x̂i)N to N and the associated utility profile (ûi)N .

A coalition S can unilaterally improve upon (x̂i)N exactly if there is some allocation (xi)S

to S that’s feasible for S and a Pareto improvement (for S!) upon (x̂i)S — in other words,

S can unilaterally improve if S’s part of the profile (ûi)N , namely (ûi)S, is in U(FS) but

not on the utility frontier, U(PS). If the utility frontier for S is described by the equation

hS((ui)S) = c for some real number c and some strictly increasing function hS, then S can

unilaterally improve upon (x̂i)N if and only if

hS((ûi)S) < c , (1)

In short, S can unilaterally improve if and only if (ûi)S lies strictly inside S’s utility frontier.

Let’s see how this works in our four-consumer example. In the Utility Frontier notes we

saw that if a set S of consumers has a total of x̊S units of the x-good and ẙS units of the

y-good, and if every one of the consumers has the utility function u(x, y) = xy, then the

utility frontier is the set of utility profiles that satisfy the equation∑
i∈S

√
ui =

√
x̊S ẙS . (2)

Since the coalition of the whole, S = N , has (̊x, ẙ) = (2, 2), the utility frontier for N is∑
i∈N
√
ui = 2. The proposed allocation (x̂i, ŷi)N , in which each odd consumer receives (0, 0)

and each even consumer receives (1, 1), yields the utility profile (ûi)i∈N = (0, 1, 0, 1), which is

on the utility frontier for N — which we knew it must be, because (x̂i, ŷi)N is Pareto efficient.

Let’s look at all the other coalitions:

The one-person coalitions, S = {1}, {2}, {3}, {4}:
UFS is ui = u(̊xi, ẙi) = 0. Since ûi = 0 for i odd and ûi = 1 for i even, ûi is either on

or outside the utility frontier for each i. So none of these coalitions can unilaterally improve

upon (x̂i, ŷi)N .

The two-person coalitions S = {1, 2}, {1, 4}, {3, 2}, {3, 4}: (See Figure 2.)

Each of these is just like the two-person Edgeworth box economy, with one odd consumer

and one even, and UFS is given by
√
uodd +

√
ueven = 1. Since ûodd = 0 and ûeven = 1, we

have (ûodd, ûeven) = (0, 1), which is on the utility frontier for S. So none of these coalitions

can unilaterally improve upon (x̂i, ŷi)N .

3



Figure 2 Figure 3

The two-person coalitions S = {1, 3} and S = {2, 4}: (See Figure 3.)

In each of these two cases the coalition has none of one of the two goods, so its utility

frontier is given by
∑

i∈S
√
ui = 0, and the utility frontier is therefore the singleton {(0, 0)}.

For S = {1, 3}, the utility profile (û1, û3) is (0, 0), which is on the utility frontier. For

S = {2, 4}, the utility profile (û2, û4) is (1, 1), which is outside the utility frontier. So neither

of these coalitions can unilaterally improve upon (x̂i, ŷi)N .

The three-person coalitions S = {1, 2, 4} and S = {3, 2, 4}: (See Figure 4.)

Each of these coalitions has one odd consumer and two even consumers; we’ll work with

S = {1, 2, 4}. We have (̊xS, ẙS) = (2, 1), so the utility frontier for S is given by the equation
√
u1 +

√
u2 +

√
u4 =

√
2. The utility profile (û1, û2, û4) = (0, 1, 1) is outside this utility

frontier. The same is true for S = {3, 2, 4}, so neither of these coalitions can unilaterally

improve upon (x̂i, ŷi)N .

Figure 4 Figure 5
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The three-person coalitions S = {1, 2, 3} and S = {1, 3, 4}: (See Figure 5.)

Each of these coalitions has one even consumer and two odd consumers; we’ll work with

S = {1, 2, 3}. We have (̊xS, ẙS) = (1, 2), so the utility frontier for S is given by the equation
√
u1+
√
u2+
√
u3 =

√
2. The utility profile (û1, û2, û3) = (0, 1, 0) is inside this utility frontier.

The same is true for the coalition S = {1, 3, 4}, so either of these coalitions can unilaterally

improve upon (x̂i, ŷi)N .

To summarize, we’ve found two coalitions that can unilaterally improve upon the proposed

allocation (x̂i, ŷi)N , and therefore (x̂i, ŷi)N is not in the core of the four-person economy.

While we haven’t actually found a feasible allocation (xi, yi)S for a coalition S that’s an

improvement on (x̂i, ŷi)N for S, we nevertheless know that one exists, and that’s enough to

tell us that (x̂i, ŷi)N is not in the core.

Here’s an allocation (x̃i, ỹi)S that’s feasible for S = {1, 2, 3} and that makes each consumer

in S strictly better off than at (x̂i, ŷi)N :

( (x̃1, ỹ1), (x̃2, ỹ2), (x̃3, ỹ3) ) =
(

(1
8
, 1
4
), (3

4
, 3
2
), (1

8
, 1
4
)
)
.

This allocation yields the utility profile (ũ1, ũ2, ũ3) = ( 1
32
, 9
8
, 1
32

), which is larger in each

component than (û1, û2, û3) = (0, 1, 0).

Notice that there are a lot of allocations to N near (x̂i, ŷi)N that are also unilaterally improved

upon by S = {1, 2, 3} with the S-allocation ( (x̃1, ỹ1), (x̃2, ỹ2), (x̃3, ỹ3) ) =
(

(1
8
, 1
4
), (3

4
, 3
2
), (1

8
, 1
4
)
)
.

For example, consider the allocation

( (x1, y1), (x2, y2), (x3, y3), (x4, y4) ) =
(

(1
6
, 1
6
), (5

6
, 5
6
), (1

6
, 1
6
), (5

6
, 5
6
)
)
.

The S-allocation (x̃i, ỹi)S makes each consumer strictly better off. So any allocation to N

that gives each of the odd consumers 1
6

unit of each good, or less, is not in the core.

Figure 6
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Exercise 1: Exactly which allocations of the form

( (x1, y1), (x2, y2), (x3, y3), (x4, y4) ) = ( (a, a), (b, b), (a, a), (b, b) )

are in the core of the four-consumer economy?

Exercise 2: Now assume there are r consumers of each type, with the utility function and

initial bundles in the example. Determine which allocations of the form in Exercise 1 are

core allocations. This requires two steps. The algebra in Step 1 is more difficult; but with

Step 1 in hand, Step 2 is easy.

Step 1: Represent each coalition S by the pair (r, k), where r is the number of odd members

and k is the number of even members. You need to show that the coalitions that can improve

upon the most allocations are the ones in which k = r − 1.

Step 2: Determine for each r what is the smallest value of a for which the allocation in

Exercise 1 can’t be improved upon by a coalition with composition (r, r − 1).

Notice how quickly the core becomes very small, if the only core allocations are the ones that

have the form in Exercise 1. (And these are indeed the only core allocations.)
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Large Economies: The Replication Model

and Equal Treatment Allocations

Example 3 suggests that the core may be much smaller in a very large economy than it is when

the economy has only a few consumers: with many consumers, there are more possibilities

for coalitions to improve on proposed allocations. So perhaps, if the economy is large, the

core will consist of only the Walrasian allocation(s)— which we know are in the core — and

allocations extremely close to the Walrasian allocation(s).

Modeling this idea in a satisfactory way is not easy — for example, the dimension of the

space of allocations depends on the number of consumers, so it’s not clear how to represent

the size of the set of core allocations for economies with different numbers of consumers. We

tackle this problem with a very special way of modeling economies with different numbers of

consumers: larger economies are modeled as replications of a smaller, basic economy.

The Basic Economy:

We start with a basic economy E = (ut, x̊t)Tt=1, which consists of T consumers. We refer

to each of these consumers as one of the types that will be replicated. (Thus, the index t

stands for type; and T is the set of all types as well as the number of types.) An allocation

in E is, as usual, a T -tuple of bundles, (xt)T ∈ RT`
+ — a bundle for each consumer in T .

The r-fold Replication of E:

In the r-fold replication of E, which we’ll denote by r ∗ E, there are r copies of each

of the consumer types in the basic economy E. Thus, the economy r ∗E has rT consumers,

and we have to index them by indicating which type and which copy we’re referring to:

the rT consumers in r ∗ E are indexed by (t, q) ∈ r ∗ T := T × {1, . . . , r}.

Equivalently, r∗T = {(t, q) | t = 1, . . . , T ; q = 1, . . . , r}. An allocation in r∗E is an rT -tuple

of bundles, (xtq)r∗T ∈ RrT `
+ .

Allocations in r ∗ E that give the same bundle to every consumer of a given type will play

a central role in the analysis. Because consumers of the same type get the same bundle in

such an allocation, we refer to these allocations as equal-treatment allocations:

Definition: An equal-treatment allocation (abbreviated ETA) in r ∗E is an allocation

that satisfies the condition ∀t, q, q′ : xtq = xtq′ .



Example 3 was a replication economy in which T = 2 and r = 2. In r∗E, all four consumers’

utility functions were the same (i.e., the two types, t = 1 and t = 2, happened to have

the same utility function, although this would not be the case in general); and x̊11 = x̊12 =

(0, 1) and x̊21 = x̊22 = (1, 0). In the example, we checked some ETAs (the ones that were

replications of core allocations in the basic economy E) to determine which ones might be in

the core of the replication economy r∗E. We will show that only ETAs can be core allocations

— i.e., the core consists only of ETAs — so that the ETAs are the only allocations we need

to check in order to determine whether they can be improved upon by some coalition. All

other allocations can be improved upon.

First we have a useful remark and proposition:

Remark: If (xtq)r∗T is an ETA, then
∑T

t=1

∑r
q=1 xtq =

∑T
t=1 rx

t, where xt = xtq, q = 1, . . . r.

In particular, (̊xtq)r∗T , the initial allocation in r ∗ E, is an ETA, and therefore any feasible

allocation (even if it’s not an ETA) must satisfy
T∑
t=1

r∑
q=1

xtq 5
T∑
t=1

r∑
q=1

x̊tq =
T∑
t=1

rx̊t = r
T∑
t=1

x̊t.

Given any allocation (xtq)r∗T in r ∗E, let xt denote the mean bundle the consumers of type

t receive in (xtq)r∗T :

xt :=
1

r

r∑
q=1

xtq.

The following proposition tells us that if the allocation (xtq)r∗T is feasible, then any coalition

S consisting of exactly one consumer of each type can unilaterally obtain the allocation (xt)T :

Proposition: If (xtq)r∗T is feasible for r ∗ T in r ∗ E, then (xt)T is feasible for T .

Proof:

T∑
t=1

xt =
T∑
t=1

1

r

r∑
q=1

xtq

=
1

r

T∑
t=1

r∑
q=1

xtq

5
1

r
r

T∑
t=1

x̊tq, by the Remark above, because (xtq)r∗T is feasible

=
T∑
t=1

x̊t. ‖
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Theorem: Let E = (ut, x̊t)Tt=1 be an economy in which each ut is strictly quasiconcave, and

let r ∈ N. Then every core allocation in r ∗ E is an equal-treatment allocation.

Proof:

Let (xtq)r∗T be a feasible allocation for r ∗E. Wlog, suppose that for each type t, the first

copy (q = 1) is treated the worst in (xtq)r∗T — i.e.,

∀(t, q) ∈ r ∗ T : ut(xt1) 5 ut(xtq).

(Note that we haven’t yet assumed that (xtq)r∗T is not an ETA: the inequality above could

be satisfied weakly for all q.)

Let S be the coalition consisting of all the first-copy consumers: S = {(1, 1), (2, 1), . . . , (T, 1)}.
We have shown in the proposition above that the T -tuple of mean bundles xt is a feasible

allocation for S. Moreover, for each type t, the mean bundle xt is a convex combination

of the r bundles xt1,xt2, . . . ,xtr, all of which lie in the upper-contour set of xt1. Since the

upper-contour set is convex, xt also lies in the upper-contour set — i.e., ut(xt) = ut(xtq) for

q = 1, . . . , r.

Now suppose that (xtq)r∗T is not an ETA, and let t be any type for which all copies do not

receive identical bundles — i.e., there are some copies q and q′ for which xtq 6= xtq′ . Since all

r coefficients are strictly positive when expressing xt as a convex combination of the bundles

xtq for q = 1, . . . , r, and since ut is strictly quasiconcave and all the bundles xtq lie in the

upper-contour set of xt1, we have ut(xt) > ut(xt1). This establishes that the coalition S can

unilaterally improve upon the non-ETA allocation (xtq)r∗T . ‖

Figures 1 and 2 depict the argument in the proof. In the figures, there are r = 3 copies of

each type of consumer, and in each figure the copy q = 1 has the smallest utility level. In

Figure 1 we have u1(x11) = u1(x12) < u1(x13). In Figure 2 all three copies of type t = 2

have the same utility: copy q = 1 is no worse off than any other copy — his utility level is

smallest, but it’s not smaller.

Figure 1 Figure 2
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Figures 1 and 2 are intended only to show how the assumption of strictly convex preferences

enters into the proof of the theorem. But it’s patently clear on other grounds that the

bundles in Figures 1 and 2 can’t be part of a core allocation: the bundles assigned to various

consumers of a given type have different MRS’s and therefore can’t be part of a Pareto

allocation, and a fortiori they can’t be part of a core allocation.

Here’s an example where it’s not at all obvious that the allocation can’t be in the core. In

order to show it, you need to essentially make the argument, for the example, that’s in the

proof of the theorem — or, of course, once we have the theorem, simply apply it to the

allocation: since the allocation’s not an ETA, it can’t be in the core.

Example: There are two goods, two types, and two consumers of each type. The Type

1 consumers are both endowed with the bundle (2, 4) and the Type 2 consumers are both

endowed with the bundle (6, 1); the economy’s total endowment is therefore the bundle

(16, 10). The proposed allocation is

Type 1’s: x11 = (3, 3), x12 = (6, 1); Type 2’s: x21 = (2, 4), x22 = (5, 2).

It’s useful to see the same information presented in the following table:

x̊t xt1 xt2 xt

t = 1 (2, 4) (3, 3) (6, 1) (4.5, 2)

t = 2 (6, 1) (2, 4) (5, 2) (3.5, 3)

Σ 2
t=1 (8, 5) (5, 7) (11, 3) (8, 5)

Utility functions (or preferences) haven’t been specified for the two types. Therefore it isn’t

clear, for either type, which of the two consumers of the type is worse off. You don’t need

to know which one is worse off to apply the theorem, but you would obviously have to know

the preferences (or reproduce the argument in the proof) in order to verify directly that the

proposed allocation isn’t in the core.

The following exercise demonstrates why it’s not obvious, without our theorem, that the

proposed allocation isn’t in the core (unlike in Figures 1 and 2, where the MRS’s aren’t all

equal).

Exercise: Provide a geometric argument to show, in the above example, that there exist

representable preferences (and therefore utility functions) in which the first consumer of

each type is strictly worse off than the second consumer at the proposed allocation and all

4



consumers have the same MRS (therefore the proposal is Pareto optimal — the four-player

“coalition of the whole” can’t improve on it). The same argument also shows that there

exist preferences in which all consumers have the same MRS and the second consumer of

each type is strictly worse off than the first consumer. Hint: In the first case it’s clear that

the common MRS must satisfy MRS > 2/3 and in the second case it’s clear that we must

have MRS < 2/3. It’s also clear that in the MRS > 2/3 case the proposal can also be

individually rational, so that none of the one-trader coalitions can improve on it either (by

simply consuming his or her endowment bundle).
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The Debreu-Scarf Theorem:

The Core Converges to the Walrasian Allocations

We’ve shown that any Walrasian equilibrium allocation (any WEA) is in the core, but it’s

obvious that the converse is far from true: most core allocations are not WEAs for the given

initial distribution of goods. (Core allocations are Pareto efficient, so the Second Welfare

Theorem does tell us that they can be supported as WEAs if we first implement some kind

of redistribution.) But we saw, at least in an example, that some core allocations — the

ones that are “farthest” from being Walrasian — were eliminated as we added consumers

to the economy. The more consumers we added, the more allocations we eliminated: the

additional consumers provided more opportunity to improve upon any proposed allocation.

It seems reasonable to conjecture, then, that when the economy is very large (i.e., when it

has very many consumers), the core may consist only of WEAs and allocations very near

them — i.e., that core allocations are very nearly WEAs. And that perhaps “in the limit,”

core allocations are Walrasian equilibrium allocations.

As we’ve seen, merely stating this idea formally is difficult. We’ll take the approach that

Edgeworth took when he first came up with this idea, and which Debreu and Scarf finally

formalized and used to prove the conjecture many decades later — the idea of considering

ever-larger replications of a basic economy. In this framework, the theorem we state and

prove (for the 2 × 2 case) says that for any allocation that’s not a WEA, if we make the

economy large enough (i.e., if we replicate it sufficiently many times), it will be so large that

the non-WEA we started with will fail to be in the large economy’s core.

Theorem: Let E = (ut, x̊t)Tt=1 be an economy in which each ut is continuous, strictly

quasiconcave, and strictly increasing, and in which x̊t
k > 0 for each t ∈ T and each good

k = 1, . . . , `. If an allocation (xt)T ∈ RT`
+ is not a Walrasian equilibrium allocation for E,

then there is an integer r̂ such that, for all r = r̂, the allocation r ∗ (xt)T is not in the core

of the replication economy r ∗ E.

Proof: (For the 2×2 case — 2 persons, 2 goods)

(This proof assumes that each ut is differentiable. This is not essential, but it makes

the proof more transparent.)

Suppose that ((x̂1, ŷ1), (x̂2, ŷ2)), or (x̂t, ŷt)T for short, is in the core, but is not a Walrasian

equilibrium allocation (a WEA). We will show that if r is large enough, then the r-fold

replication of (x̂t, ŷt)T — i.e., r ∗ (x̂t, ŷt)T — will not be in the core of the r-fold replication

r ∗ E.



First, notice that (x̂t, ŷt)T 6= (̊xt, ẙt)T : we’ve assumed that (x̂t, ŷt)T is in the core, so it is

Pareto efficient; but if the endowment allocation is Pareto efficient, then the Second Welfare

Theorem would ensure that it’s a WEA, and we’ve assumed that (x̂t, ŷt)T is not a WEA.

Let L denote the line that passes through, say, (x̂1, ŷ1) and (̊x1, ẙ1), and let −τ be its slope:

τ = − ŷ
1 − ẙ1

x̂1 − x̊1
= − ŷ

2 − ẙ2

x̂2 − x̊2
,

which is the trading ratio defined by (x̂t, ŷt)T and (̊xt, ẙt)T . [The two traders’ trading ratios

are equal because x̂1 + x̂2 = x̊ and ŷ1 + ŷ2 = ẙ, which follows from the fact that each ut is

increasing.] Wlog, assume that the common MRS at (x̂t, ŷt)T , denoted σ, satisfies σ < τ ,

and assume that x̂1 > x̊1 and x̂2 < x̊2. [The common MRS exists because (x̂t, ŷt)T is Pareto

efficient and preferences are quasiconcave.]

Since σ < τ , each consumer would gain by giving up some (perhaps only very little) of the

x-good in return for the y-good at the rate τ , as depicted in Figure 1. If we write

zt = (ztx, z
t
y) = (xt − x̊t, yt − ẙt)

for type t’s net trades, and

ũt(zt) := ut(̊xt + ztx, ẙ
t + zty)

for type t’s utility from a net trade zt, then we have

(1) ẑ1 + ẑ2 = (0, 0), and

(2) ũ1(λ1ẑ
1) > ũ1(ẑ1) and ũ2(λ2ẑ

2) > ũ2(ẑ2)

for some λ1 < 1 and λ2 > 1. We need to construct a coalition made up of α1 members of

type 1 and α2 members of type 2, and give each member of the coalition the net trade λtẑ
t

(depending on the member’s type, t = 1 or t = 2), thereby making each member better off

than at ẑt. The question is: How can we use the numbers λ1 < 1 and λ2 > 1 to determine

the numbers α1 and α2 (which must be integers)?

If each member of the coalition receives the net trade ẑt (t = 1, 2), then the coalition’s

aggregate net trade will be α1λ1ẑ
1 + α2λ2ẑ

2. That aggregate net trade has to be (0, 0) if the

coalition is to implement it unilaterally. Therefore we need to have

α1λ1ẑ
1 + α2λ2ẑ

2 = (0, 0).

Since we do have ẑ1 + ẑ2 = (0, 0), it will suffice to have

(3) α1λ1 = α2λ2; i.e.,
α2

α1

=
λ1
λ2
.

If λ1 and λ2 are rational numbers (each a ratio of integers), then we can choose integers α1

and α2 that satisfy (3), and then we let r̂ = max{α1, α2}. And it’s clear from (2), together

with continuity of each ut, that we can indeed choose λ1 and λ2 to be rational. �
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Concluding Remarks:

The way we’ve modeled large economies is extremely special and unrealistic. An actual

economy, if it’s very large, isn’t going to consist of only a small number of types of consumer,

with every consumer being one of these few types. Even if this were a good approximation —

even if there were a small number of types and every consumer were very close to one of those

types — it would be astonishing if there were also exactly the same number of consumers of

each type.

Shortly after Debreu and Scarf published their paper on the core convergence theorem, in

1963, Robert Aumann published a paper in which he took a remarkably innovative approach

to formulating a model of a large economy in which individual consumers have negligible

influence. Aumann modeled a large economy as one with an infinite set of consumers, en-

dowed with a measure in which each individual consumer has measure zero. Within this

model, Aumann used essentially the Debreu-Scarf method of proof to show that in a large

economy the only core allocations are the Walrasian equilibrium allocations. Aumann’s pa-

per — especially the introductory section — is one of the most striking and elegant papers

in economics. You should definitely read both the introductory and concluding sections, and

make the effort to read the remaining five pages which contain the formal model and proof.

The paper is available on the course website, in the Readings section.

After Aumann’s paper, a great deal of work was devoted to these ideas over the subsequent

two or three decades, in which Aumann’s continuum model (and the core equivalence result,

and others) was shown to be the limiting case, in a well-defined sense, of large but finite

economies.

So what’s the significance of the Core Convergence (Debreu-Scarf) Theorem? It tells us that

if the economy is sufficiently large that individual consumers are negligible, then whatever

institution we use to allocate resources, we will end up with the same outcome we would have

attained via markets and prices. Of course, that assumes we have no externalities, consumers

have complete information about the prices and the commodities, and consumers are free to

“go their own way,” using their own resources independently of other consumers. And note

that we didn’t allow production, which complicates things considerably, largely because of

scale phenomena.

The concept of the core is important in contexts other than large economies. For one example,

in auction theory, see the paper by Ausubel and Milgrom on the course website, especially

Section 5 of the paper.
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Exercise: The Core Shrinks Under Replication

We begin with a 2 × 2 “Edgeworth Box” exchange economy: each consumer has the same

preference, described by the utility function u(x, y) = xy; Consumer 1 owns the bundle (̊x1, ẙ1) =

(15, 30); and Consumer 2 owns the bundle (̊x2, ẙ2) = (75, 30).

(a) Verify that there is a unique Walrasian (competitive) equilibrium, in which the price ratio

is px/py = 2/3 and the consumption bundles are (x1, y1) = (30, 20) and (x2, y2) = (60, 40).

(b) Verify that the Pareto allocations are the ones that allocate the entire resource endowment

of (̊x, ẙ) = (90, 60) and satisfy y1/x1 = y2/x2 = 2/3.

(c) In the Edgeworth Box draw the competitive allocation, the Pareto allocations, and each

consumer’s budget constraint at the competitive prices. Draw each consumer’s indifference curve

containing his initial bundle and indicate the core allocations in the diagram.

(d) Verify that the Pareto allocations for which x1 <
√

675 are not in the core. Note that
√

675

is approximately 26. Similarly, the Pareto allocations for which x2 <
√

3375 ≈ 58.1 are not in the

core.

(e) Consider a proposed allocation (x̂1, ŷ1) = (27, 18) and (x̂2, ŷ2) = (63, 42). Note that each

consumer’s marginal rate of substitution at the proposal is 2/3. Verify that the proposal is in the

core. Verify that the “trading ratio” τ defined by the proposal is τ = 1. As in our lecture notes

on the Debreu-Scarf Theorem, use the “shrinkage factor” λ1 = 2/3 and the “expansion factor”

λ2 = 4/3 to verify that a coalition of just two “Type 1” consumers and one “Type 2” consumer can

unilaterally allocate their initial bundles to make all three of them better off than in the proposal.

Therefore the proposal is not in the core if there are two or more consumers of each type.

(f) Now consider the proposal (x̂1, ŷ1) = (281
2
, 19) and (x̂2, ŷ2) = (611

2
, 41), and use the same

λ1 and λ2 as in (e) to establish that this proposal too is not in the core if there are two or more

consumers of each type.

(g) Now consider the proposal (x̂1, ŷ1) = (29, 191
3
) and (x̂2, ŷ2) = (61, 402

3
), and use the factors

λ1 = 4/5 and λ2 = 6/5 to establish that this proposal is not in the core if there are three or more

consumers of each type.
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