Arrow’s Pricing Formula for Securities

Let S be a finite set of states of the world and let N be the index set for a finite set of consumers.
Generic elements of S and N are denoted by s € S and ¢ € N. In a slight abuse of notation,
we also use S and N to denote the number of elements in S and N. We assume that there is
only one good; each consumer i € N is endowed with ) units of the good today and with z
units in state s tomorrow. It’s convenient to think of the good as dollars. Let x* = (2%, ..., 2%).
A consumption plan for consumer i is a (1 + S)-tuple (z},x") € R}ﬁs, and an allocation is an
N-tuple of plans, (z,x");en. Each consumer evaluates consumption plans according to a utility
function u’ : Rfs — R. The economy is fully described by the set S of states and by the N-tuple

(u*, 2, X");en of consumers.

A set of securities for this economy is an S x K matrix D. Each column of D is the S x 1 returns
vector or dividends vector of one of the securities: the element dg; specifies how many dollars one
unit of security k£ will return tomorrow if state s occurs. Note that d,; may be positive, zero, or
negative. The K columns of D are thus the K securities. Consumers purchase or sell units of the
securities today and hold them until tomorrow, when one of the states s € S is realized and each
security k returns dg, dollars for every unit of the security a consumer owns. We denote by v},
the number of units of security & purchased by consumer ; yi may be positive, zero, or negative.
Consumer i’s portfolio is the K-tuple (yi,...,%), which we denote by y*. Note that if consumer
i purchases the portfolio y?, then his vector of state-contingent returns will be the S-tuple Dy*.
(It’s most convenient here to write y* and Dy as K x 1 and S x 1 column vectors.) We denote

the price of security k by g, and we write q = (q1, . - -, ¢k )-

Definition: An equilibrium of the securities markets defined by the matrix D is a (K +
NK + N(1+ 8))-tuple (q, (y")ien, (25, x')ien) € RE x RVE x RYUHS) that satisfies the utility-

maximization and market-clearing conditions:

(U-M) Vie N:(y', =), x") maximizes u’(z),x') subject to the constraints
rh+q-y' Sz and
ot S E 4 dayl, Vs e S, ie, x <x'4 Dy’

(M-C) Zf\il x(lJ = Zi\il 556 and Zi\il ylzc =0, k=1... K

Examples: Our “Extended Example of Equilibrium Under Uncertainty” contains several exam-
ples of securities markets using this model. Part 3 of the example is a market with a single security,
a credit instrument such as a saving account or a bond. Part 4 adds a second security, an insurance

contract.



Example: Suppose there are only two states, s = H and s = L, and one security, which returns
a in state H and b in state L. By choosing y, the number of units of the security he will buy at

today’s security price ¢, a consumer can vary xy and x, but not independently:

IH—IO'H a °
) = Y and To = To — QY.

Thus, giving up y units of consumption today will only allow him to augment his consumption

tomorrow by multiples of (a,b) across the two states.

Now suppose there’s a second security, which returns c¢ in state H and d in state L. If (¢,d) is
a multiple of (a,b), then nothing is gained by the introduction of the second security: choosing
amounts y; and yo of the two securities still augments one’s consumption tomorrow only by mul-
tiples of (a,b). But if (a,b) and (c¢,d) are not multiples of one another — i.e., if they’re linearly

independent — then for any state-contingent consumptions xy and x; tomorrow, the equation

Ty — Ty | a c 1
YR
has a solution (yi,y2). Thus, in this case, state-contingent consumption tomorrow can be aug-
mented by any amounts ry — g and xy; — £y by giving up some amount of consumption today
in order to purchase some amounts y; and y, of the two securities. More securities would not add
anything, but would not hurt either: as long as the securities returns matrix has two linearly inde-
pendent columns (securities), any state-contingent consumptions can be achieved. More generally,

with S states, the securities returns matrix D must have S linearly independent columns — i.e.,

we must have rank D = S. We could equivalently say that the securities must span the space R®.

It seems intuitive that this spanning condition will be necessary and sufficient to ensure that the
securities markets achieve the same outcome as with complete Arrow-Debreu contingent claims
markets — that an equilibrium allocation attained via securities markets will coincide with an

Arrow-Debreu allocation. We now verify this intuition.

To simplify notation, let’s temporarily substitute z, for zo — o and z, for each x, — z,. The
key to establishing the equivalence of equilibrium outcomes is the individual consumer’s budget
constraints: we show that if the securities span R®, then both market structures present the
consumer with exactly the same budget sets at their respective equilibrium prices. In our z-
notation, the consumer’s Arrow-Debreu budget constraint is zg + p -z = 0. We wish to be able
to show that at some security prices q the constraint zp + q -y = 0, together with the fact that

z = Dy, makes exactly the same set of (2g,z)’s available as the constraint zo + p - z = 0 does.
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The following proposition establishes that this is so if the securities span R® and if their prices are
related to the contingent claims prices p according to q = pD. The proposition then leads to the
subsequent theorem which establishes the equivalence between the securities markets equilibrium

and the Arrow-Debreu equilibrium.

Proposition: Let p € R%: let D be an S x K matrix; let ¢ = pD € RX; and let

A=1{(2,2z) e R™ | zp+p-z=0} and
B ={(20,2) R | Iy e R¥ : 2y +q-y = 0 and z = Dy}.

If rank D = S, then A = B.

Proof:
Note that if z= Dy then p-z=p - (Dy) = (pD) -y =q-y. We show that A C B and B C A.

(i) Let (z0,z) € A. Since rank D = S, there is a y € R¥ that satisfies z = Dy. Since 2o+ p-z = 0
(because (29,z) € A) and p-z = q-y (because z = Dy), we have zy + q -y = 0, and therefore
(20,2) € B.

(ii) Let (20,z) € B. Then, according to the definition of B, there is a y € RX that satisfies both
zo+q-y =0 and z = Dy. Therefore p-z = q -y, and it follows that zg + p -z = 0, and therefore
(20,2) € A. ||

Theorem: Let D be an S x K securities returns matrix that satisfies rank D = S, and let q = pD.
If (p, (z},x")ien) is an Arrow-Debreu equilibrium for the economy E = (S, (u’, (2, X"))ien), then
there is a profile (y');eny of portfolios for which (q, (y%)ien, (25, X")icn) is an equilibrium of the
securities markets defined by D for the economy E. Conversely, if (q, (y')ien, (25, X )ien) is a

securities-markets equilibrium, then (p, (x},x");cy) is an Arrow-Debreu equilibrium for E.

Remark: Note that the allocation (z{,x");cn is the same in both equilibria — i.e., everyone’s

state-contingent consumption is the same in both equilibria.

Proof of the Theorem: This is a simple corollary of the preceding proposition. For each i € N,
we let z{ — z{ and x* —x* play the roles of zy and z in the proposition. The set A in the proposition
is therefore the set of plans (xf,x") available to consumer i — consumer i’s budget constraint —
at the equilibrium price-list p in the Arrow-Debreu equilibrium, and the set B is the set of plans
available to him at the securities prices q = pD in the corresponding securities markets. If
rank D = S, then the two sets of available plans (z},x") are identical, and the consumer will
therefore choose the same plan when facing either price-list. Therefore the utility-maximization
and market-clearing conditions are satisfied in one case if and only if they are satisfied in the other

case. ||





