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Introduction

This book describes the structure of general equilibrium models. It is written
for the researcher who intends to construct or study applied general
equilibrium (AGE) models and has a special interest in their theoretical
background. Both general equilibrium theory and AGE modeling continue
to be active fields of research, but the styles of presentation differ greatly.
Whereas the applied model builder often finds the style of theoretical papers
inaccessible, the theoretician can hardly recognize the concepts he is used to
in the list of equations of applied models. The main purpose of the book is
to present the theoretical models in a unified way and to indicate how the
main concepts can find their way into applications.

To make the models more accessible and their structure more transpar-
ent, we unify the presentation in four ways. First, we use standardized,
though possibly not the weakest, assumptions on basic model components
like utility functions and production sets (chapters 1 and 2), and we only
deviate from the standard when the topic requires it. Second, in chapter 3
we define five basic formats to represent and to analyze the same model. For
every specific model to be discussed in chapters 4 to 12, we apply the format
that proves most convenient. Third, beside fixed point theorems (appendix
A.4), we almost exclusively use theorems from the theory of convex
programming as mathematical background (appendixes A.1 to A.3). Finally,
every model in chapters 4 to 12 analyzes a topic within a common basic
scheme, as follows:

1. The chapter starts introducing the topic (e.g., taxes or finite horizon
dynamics) and then proceeds with the discussion of the issues related to the
topic itself as well as its incorporation in a general equilibrium model. This
may require nonstandard assumptions (e.g., relaxing convexity).

2. Existence proofs are given, using the most convenient format defined in
chapter 3. The proofs are not meant as a theoretical contribution and
mainly serve to highlight the roles of the various assumptions and to
indicate how the fixed point mapping can be set up for computing a solution
via fixed point algorithms. Issues in computation are briefly dealt with in
appendixes A.7 to A.9.

3. Various properties of the equilibrium solution of the model are analyzed,
with a focus on efficiency. We derive conditions under which the inefficien-
cies due to specific imperfections (taxes, price rigidities, external effects) can
be reduced through Pareto-improving reforms. However, these reforms only
represent an idealized situation, since they require losers to be compensated
and all imperfections to be reduced simultaneously.

4. Policy reforms can rarely eliminate or even reduce all imperfections at
the same time. Therefore their consequences cannot be predicted from
theory alone, and numerical simulation is called for. This requires construct-
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ing applied models that can be used to run alternative scenarios. Every
chapter ends with a section that describes how applied models that incor-
porate ,the theoretical concepts can be built and briefly surveys existing
applications.

The following limitations should be mentioned:

1. For clarity of exposition, the topics will often be treated in isolation. For
example, we limit the presentation of finite and infinite horizon dynamics to
the case of the cl~sed economy. Occasionally some issues need to be treated
together (e.g., taxes, tariffs, and foreign trade in chapter 5).

2. In chapter 2 we compare several analytical forms (CES, translog, etc.) for
the functions that should be estimated econometrically, but in the sections
on applications, we do not enter into the details of these specifications.

3. We sketch the framework for national and social accounting that is
needed as a database (the social accounting matrix, SAM) to calibrate a
model, but we hardly discuss the elaborate process that leads from statistical
publications to such a database.

4. Computation of equilibria has received much attention in the early years
of AGE modeling. Advances in computing capacity and speed as well as the
availability of user friendly packages, such as GAMS, have almost elimin-
ated computational concerns for most applications. Therefore computa-
tional issues are only treated briefly in appendixes.

5. The numerical solutions of AGE models should be made easily interpre-
table for the policy analyst who will be reluctant to decipher the standard
printings from software packages. The presentation should thus be cus-
tomized, and the results should be cast in the form of tables the analyst is
familiar with. Deriving such tables for every model is hardly meaningful
without a numerical illustration, and giving this in every chapter would
cause excessive duplication.

We overcome some of these limitations and avoid repetition by descri-
bing, in appendix B, a complete numerical application in GAMS language,
incorporating taxes, trade, price rigidities, buffer stocks, transportation
costs, and simple dynamics. The application uses simple functional forms
and yields social and national accounts in report quality form.!

To summarize, chapters 1 to 3 and appendix A set the framework for the
topics covered in chapters 4 to 12. Chapter 1 provides an elementary but
almost comprehensive treatment of the competitive model. It ends, in
section 1.5, with an overview of the properties that could be relaxed so as
to make the model more useful for policy analysis and introduces the
subjects covered in chapters 4 to 12. Chapter 2 deals with relatively standard
elements of the theory of producer and consumer behavior, most of which
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can be found in textbooks such as Varian's Microeconomic Analysis. The
reader who is familiar with this material can proceed to section 2.3, which
summarizes the microeconomic assumptions that are used in later chapters.
Section 2.4 presents results on welfare analysis that are needed in proofs.
Chapter 3 describes the basic formats and introduces the methods of proof
used in the book. .Its last section discusses the main steps in constructing a
numerical application and gives a full GAMS application for the simplest
possible model. The reader may choose freely the order in which he wants
to study the topics covered in chapters 4 to 12. Occasionally he may have
to consult material from earlier chapters and from appendix A, and this will
be pointed out explicitly when needed.

A user's guide and library of GAMS-models (Keyzer 1997) accompany
this volume. Both are freely accessible at the MIT Press Internet site
(http://www.mitpress.mit.edu). The guide extends the material covered in
appendix B. The library contains a set of computer programs with illus-
trative applications for most of the models covered in chapters 3 to 12 of
this book, except for the infinite horizon m,odels of chapter 8.
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;i

We denote the n-dimensional real space by Rft, the nonnegative orthant by
R~, and the positive orthant by R~ +. Let x and y be two vectors in Rft. The
following notations are equivalent:

Enumeration all h ~ h = 1,..., n

n

Summation ~hXh == L xh
h=l

If and only if iff or ~

Complementary slackness (x ~ 0 .L Y ~ 0) ~ (x ~ 0, xy = 0, y ~ 0)

Inner productl xy == X' Y == ~hXhYh

Inequality x ~ y~xh ~ Yh for all h, and similarly for ~;
x > Y ~ Xh > Yh for all h, and similarly for <.

Partial derivative (Jacobian) F'(x) == of(x)jox

Fixed point or equilibrium superscript *

Optimal value of a variable2 superscript 0

Vector norm3 Ilxllp == (~~= llxhIP)l/p for given 1 ~ p < 00;
Ilxlloo == maxl~h~nlxhl, for the limiting case;
Ilxll == Ilxllp for some p to be specified.

Matrix norm IIAII == suPllxll=lllAxll

Notation in the Mathematical Program

The notation will be introduced by means of an example. Define the
function u: X c Rn -+ R and the sets Yj c Rn, j = 1,. .., J, and consider the
mathematical program:

max u(x),

x;:?:O,Yj,allj,

subject to

x ~ ~jYjYjE}j.(P),

For simplicity we write "max" instead of "sup" because we only consider
programs for which the maximum will be attained. The choice variables x
and Y j are placed under the maximand. Here x is constrained to be

1. When no confusion is possible, we avoid using the transposition sign for inner products
and for premultiplication of a matrix by a vector.
2. When no distinction with equilibrium values is needed, the superscript * is also used.

3. More general definitions can be used. Here we restrict ourselves to {p-norms.
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nonnegative while Yj is unconstrained. We write "all j" as equivalent for
')" = 1,..., J"; "all j" is assumed to apply for all constraints that use the

subscript without summation sign (here it applies to the second but not to
the first constraint). The brackets (P) denote a vector of Lagrange multi-
pliers associated with the constraint x ~ ~jYj (the vector p is a member of
the set of multipliers).

We also use a more compact notation; for example, for the utility
maximization of the consumer, we write

V(p, h) = maxx~o{u(x) Ipx ~ h}

or

x(p, h) = argmaxx~o{u(x) Ipx ~ h},

where p and h are the given price and income, respectively, V(p, h) is the
value function, and x(p, h) is the unique optimal choice. If the solution is not
unique, we consider one optimal choice XC and write

xOEargmaxx~o{u(x) Ipx ~ h}



Competitive Equilibrium

In this chapter we describe an economy, say, of a village, a town, or a
country, that does not entertain trading relations with an outside world. We
call this a closed economy.

After introducing basic concepts in section 1.1, we prove existence of
equilibrium in the simplest possible aggregate framework, without reference
to individuals' behavior, and we discuss computation of equilibrium and
properties like multiplicity and stability in section 1.2. In section 1.3 we
impose a first set of assumptions on the behavior of producers and
consumers and show that under these assumptions, a competitive equilib-
rium exists. Section 1.4 is devoted to the welfare properties of equilibrium
allocations. Finally, section 1.5 points to the need for extensions that will
yield an applied general equilibrium model with a more realistic structure.

1.1 Basic Concepts

1.1.1 Commodities and Agents; Demands and Supplies

utus consider an economy with r commodities indexed by k = 1,2,...,r.
The commodity space is thus an r-dimensional space, denoted by Rr, and all
vectors belong to that space.

An orange available today in New York is more or less the same as an
orange in Marseilles tomorrow, but each will be defined as a different
commodity in a general equilibrium model, which distinguishes commodi-
ties by location and date of delivery. By definition, each commodity k will
be traded at a single price Pk. Agents are characterized by preferences over
commodities and by capabilities to satisfy these preferences through actions
like production, purchases, sales, storage, and consumption, now or in the
future. This situation may be formalized by representing each agent as
maximizing his utility subject to technological and trading constraints. In
the simplest case the budget constraint, which requires expenditure not to
exceed revenue, is the only restriction on exchanges. Under these conditions
and some specific assumptions to be discussed later on, we can decompose
the decisions made by each agent into two subproblems:! profit maximiza-
tion subject to technological constraints, and utility maximization subject to
a budget constraint.

These subproblems enable us to consider two types of agents who make
decisions: producers (or firms) and consumers. There will be n producers,
indexed by j = 1, 2,..., n who will produce (and sell) commodities using
(and buying) some other commodities, like labor, steel, and machines. Let
Y j(P) be the production plan of producer j, where P denotes the price vector;
outputs will carry a positive sign and inputs a negative sign. There will be

1. See Koopmans (1957).
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m consumers, indexed by i = 1,2,..., m. Every consumer offers for sale his
commodity endowment Wi and expresses the wish to buy a commodity
bundle Xi(P) at given prices p.

We define the excess demand vector z(P) as

z(P) = kiXi(P) -kjYj(P) -kiWi.

The typical component Zk(P) of this vector will represent the excess of
demand over supply (which includes the initial endowment) of commodity k.

A natural solution concept is to require that no commodity be in excess
demand; otherwise, some agents would not be able to carry out their
demands. We accept, however, that there can be excess supply for some
commodities, which can be disposed of freely (the free disposal assumption).
An excess demand equilibrium is then defined as follows:

DEFINmON 1.1 (Excess demand equilibrium) The price p* ~ 0, p* # 0,
and the excess demand z(p*) define an excess demand equilibrium if
z(p*) ~ O.1.1.2 

The Behavior of Producers and Consumers

Our description of the agents' behavior starts with the assumption that
prices exist for all commodities and that all agents take these prices as given,
none of them being sufficiently "large" or "important" to think that he can
influence a price, even less set a price. Prices are thus considered as signals
on the basis of which agents compute their plans. Such an institutional
setting is commonly referred to as perfect competition.

Production Plans

Each producer j is endowed with a technology, represented by a set 1),
which belongs to Rr and is the set of feasible production plans. A producer
formulates a production plan Y j that must be feasible: This is expressed as
Y j E 1). Obviously further assumptions that characterizeihe mathematical
properties of the set 1) are needed. The competitive model assumes that from
the set of feasible plans Y j' the producer chooses those that maximize his
profit, defined as LkPkYjk or PYj.

The problem of producer j can thus be stated as follows: Given the price
vector P, and the technological set 1), producer j chooses Y j so as to max-
imize profits PY j subject to a feasibility constraint Y j E 1), or

llj(P) = maxYJ{PYj I YjE 1)}, (1.1)

where llj(P) is the resulting maximal profit.
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Consumption Plans

The choice made by consumer i is restricted in two ways. First, his
consumption plans need to be feasible: He cannot consume negative
quantities of any commodity: XiER'+. Second, he is faced with a budget
constraint: He cannot spend more than his income hi. Since at given prices
p, a consumption plan Xi costs PXi, his budget constraint can be written as

PXi ~hi.

The income hi of the consumer consists of two parts: The proceeds proi of
selling the endowment roi and distributed profits. The latter are defined as
follows: It is assumed that consumer i owns a nonnegative share (}ij in firm
j and that he receives dividends (}ijllj(P) from this firm. All profits are
distributed so that Li(}ij = 1 for every j. Consumer i's income is now

h. = Pro. + L.(}..ll. (P)., , J 'J J

Consumer i is also characterized by a utility function Ui(XJ, which associates
to every consumption plan Xi a utility level Ui(XJ; under further assumptions
on Ui(XJ, this makes it possible to consistently rank alternative consumption
bundles.

The problem of consumer i can now be stated as follows: Given the price
vector P and the revenue hi, consumer i chooses Xi so as to maximize his
utility Ui(XJ subject to a feasibility constraint Xi ;;:!: 0 and to his budget
constraint PXi ~ hi, or

maxx/~O{Ui(XJ IpXi ~ hJ.

1.1.3 General Competitive Equilibrium

(1.2)

The excess demand equilibrium of definition 1.1 is a general equilibrium
because it covers all agents and all commodities of the economy. We can
now define a general competitive equilibrium as an excess demand equilib-
rium, in which producers and consumers behave according to (1.1) and (1.2),

respectively.

DEFINITION 1.2 (General competitive equilibrium) The allocation yj, all j,
xf, all i, supported by the price vector p* ~ 0, p* :;.!: 0 is a general competi-
tive equilibrium if the following conditions are satisfied:

1. For every producer j, yj solves maXyj{p*YjIYjE }j}.

2. For every consumer i,xt solves maXXi~O{Uj(xJ Ip*Xj ~ ht}, where ht =
P*Wj + I:jlJjjp*yj.

3. All markets are in equilibrium, I:jxt -I:jyj -Ejwj ~ O.
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In definition 1.2 there are four components. First, agents have behavioral
rules that they follow to compute their optimal decisions. Second, in doing
so, they take into account signals, without trying to affect these: Producers
react on prices only, consumers take into account prices and their income.
Third, there is a price for every commodity, so a competitive market exists
for every commodity. Fourth, there are conditions on excess demands,
which agents do not take into account when making their decisions and
which are satisfied in equilibrium.

Characteristics of a General Competitive Equilibrium

So far, endowments Wi and shares in profits f)ij are the only explicit
parameters. In applied models other parameters like tax rates or institu-
tional rigidities will appear, and the model. will be used to compute solutions
when variations are imposed on some of these parameters. When analyzing
the response of the model to such changes, several issues have to be
addressed. To introduce these, we consider the response of the system
z(p, w) ~ 0 to variations in W only, where W = (WI' W2,..., rom) is the vector
of endowments of all consumers.

Various questions now come up: (1) What are natural properties for
z(p, w) (assumptions)? (2) Does the system z(p, W) = 0 have a solution with
nonnegative prices (existence)? (3) How many such solutions are there
(multiplicity)? (4) Do we know anything on the direction of change of prices
and allocations when W changes (general properties of z(p, w»? (5) How to
compute solutions given a numerical specification of z(p, w)? (6) Are some
policy changes "better" than others (welfare analysis)? Finally, when build-
ing an applied general equilibrium model, the main issue is (7) how to
specify numerically the model (empirical implementation). We will discuss
these questions by turns.

1.2 Excess Demand Equilibrium

1.2.1 Assumptions on the Excess Demands

We now formulate assumptions on the excess demand function z(P), along
the lines of Arrow and Hahn (1971, ch. 2). In section 1.3 we will specify
assumptions on individual agents and the properties of the excess demand
function will follow from there:

ASSUMPTION Zl (Sipgle-valuedness and continuity) z(P) is a single-valued
and continuous function, which is defined for p ~o, p # 0.2

2. We use the following notation: p ;1; 0 means that Pk ;1; 0 for all kE~~~~ mean that
Pk > 0 for some k, P > 0 means that Pk > 0 for all k.
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ASSUMPTION Z2 (Continuous differentiability) z(P) is continuously dif-
ferentiable for p > O.

ASSUMPTION Z3 (Homogeneity) z(P) is homogeneous of degree zero in p.

ASSUMPTION Z4 (Walras's law) pz(P) = O.

ASSUMPTION Z5 (Desirability) Pk = 0 implies that Zk(P) >"0 for k =
1,2, ..., r.

In assumption Zl single-valuedness is fairly restrictive and will not be
satisfied in many practical applications (e.g., when production takes place
under constant returns to scale).3 The assumption is made here in order to
keep the first proof of existence of an equilibrium simple, and it will be
relaxed later on. The continuity assumption is also restrictive, particularly
when Pk = 0 for some k, because at that price we may expect excess demand
to rise to infinity and hence to be discontinuous.

Assumption Z2 is restrictive, but it will only be used when we discuss
multiplicity of equilibria and the response to changes in parameters.
Assumption Z3 implies that for every scalar J. > 0, z(J.p) = z(P). We can thus
multiply each nonzero, nonnegative price vector by some positive number,
without changing the value of the excess demand function z(P): The absolute
level of prices does not affect outcomes. Without loss of generality, and since
we require some prices to be positive anyway, we can assume that ~kPk = 1.
Prices now belong to a set sr = {p I ~Pk = 1, Pk ~ O}, called the price
simplex. This scaling is known as price normalization. Other normalizations
are possible. For example, we may choose commodity 1 as numeraire, that
is, set PI = 1. But this can only be done if PI is positive in equilibrium.

Assumption Z4 (Walras's law) plays an important role in general equilib-
rium models. Replacing z(P) by its components yields

P}:;iXi(P) = P}:;jYj(P) + P}:;i(()i.

The assumption requires that for every nonzero, nonnegative price, the
value of aggregate demand must be equal to the value of aggregate supply.

Finally, assumption Z5 states that demand for a commodity will be larger
than supply whenever its price is zero. This assumption is not essential. It
merely ensures that all prices are positive in equilibrium.

1.2.2 An Existence Proof

Existence proofs play an essential role in economic theory. This is because
a model that does not possess any solution is inconsistent and therefore
meaningless, but also because the existence proof itself highlights the role of

3. In that case YjE:!J implies that AYjE:!J for every positive scalar A. We will later see that this
implies nonuniqueness of optimal Yj.
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the assumptions made and, by that, facilitates the search for weaker
assumptions. In doing so, it enlarges the field to which the theory applies.

The applied modeler may think that he can dispense of existence proofs
because a reasonable model can always be calibrated so as to possess a
solution. However, such a calibration will not help when the modeler seeks
to compute a new solution after having changed the value of some
parameter. Then he needs to know the range of parametric variations for
which a solution will exist at all. The theoretical assumptions limit the range
of variations of these parameters, and the existence proof makes clear why
these restrictions are needed. Finally, the existence proof is useful because it
will in general construct a fixed point mapping that can serve as the basis
of the fixed point algorithms that solve the model numerically.

We will now prove that an equilibrium exists in this economy, using the
assumptions made in section 1.2.1. The proof of this basic result rests on a
fixed point theorem, due to Brouwer, that states that a continuous function
G that maps a compact convex set A into itself (G: A -+ A) has a fixed point
x*, that is, a point such that x* = G(X*}.4

Hence Brouwer's theorem imposes three requirements: (1) the function
G(x} should be continuous, (2) it should map from a compact, convex
domain A, (3) the mapping should be "into itself': The range A should be
the same as the domain. We illustrate the role of each of these requirements.
In figure 1.la we draw a function that meets all the requirements with the
unit interval as the set A. There are three fixed points (intersections with the
450 line). Note first that unless the function is tangent to the 450 line, the
number of fixed points will always be finite, and there will be at least one
intersection. Then, unless the function starts at (0,0) and ends at (1, 1), the
number of fixed points must be odd. In figure 1.lb the mapping is not single
valued (it is not a function but a correspondence); nevertheless, it maps from
A into A and is convex valued (it is obviously so when single valued, but it
also is at XO where it is set valued, since the interval BB' is a convex set). In
this case a fixed point will exist, but now by virtue of the Kakutani theorems
instead of the Brouwer theorem. In figure 1.lc the correspondence is
compact and maps into A, but it is not convex valued (and not continuous)
at XO and there is no fixed point. Figure 1.ld shows that the three
requirements are sufficient but not necessary: A fixed point exists, though
the function is not continuous, not defined everywhere, not compact valued
(it goes to infinity), and does not map into itself (C does not lie in A). In
figure 1.le the domain of the function is compact, and the function is
continuous, so its range is compact. But the range is not contained in the

4. See theoremA.4.! in the mathematical appendix A.

5. See theorem A.4.2.
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domain, and no fixed point exists. Finally, figure 1.1f illustrates that the
requirement (3) of "mapping into itself' is not necessary.

Though the proof of existence of equilibrium is standard, we give it
because it clarifies the role played by the various assumptions.

PROPosmON 1.1 (Existence of an excess demand equilibrium) If assump-
tions Zl, Z3, and Z4 hold, then there exists a price vector p* E S' such that
z(p*) ~ o.

Proof To apply the Brouwer theorem, we first define a continuous function
G that maps the simplex S' into itself. Second, we show that at such a fixed
point, the equilibrium conditions are satisfied.

1. Definition of the function. Let

GL(lJ) = Pk + max[O, Zk(P)]
-A~' ~jPj + ~jmax[O'Zj(P)] .

Then, since P E sr and z(P) is continuous, G(p) maps the simplex into a
compact set. Moreover max[O'Zk(P)]~O, ~jmax[O,zj(P)]~O, and ~jPj = 1.
Therefore the denominator is strictly positive; hence the function G(p) is
continuous and maps sr into itself. At this point we can invoke Brouwer's
theorem. There exists ap: such that pt = Gk(P*). By the definition of Gk(P),
in the fixed point, we have

p: + max[O, Zt(P*)]p* -k -1 + }:;jmax[O,Zj(P*)]. \,".J}

2. We have still to show that Zk(P*) ~ 0 in the fixed point. Indeed,
multiplying the two sides of (1.3) by the denominator leads to

pt}:;jmax[O,Zj(P*)] = max[O,zk(P*)]. (1.4)

Multiplying each term of (1.4) by Zk(P*) and summing over all k yields

}:;kPt Zk(P*) }:; j max[O, Z j(P*)] = }:;kZk(P*)max[O, Zk(P*)]. (1.5)

On the left-hand side of (1.5), there is a term }:;kPt Zk(P*) that is equal to
zero, by assumption Z4, and hence

}:;kZk(P*) max[O, Zk(P*)] = O.

Each term in this sum is equal to 0 if Zk(P*) ~ 0 and to [Zk(P*)]2 if
Zk(P*) > O. The zero terms do not contribute to this sum. All others are
positive, but then the expression on the left-hand side cannot be equal to
zero. Therefore none of the Zk(P*) can be positive. .

Propo'sition 1.1 guarantees that there exists at least one equilibrium. But,
as suggested by figure 1.1a, there may exist many equilibria. We return to
this in section 1.2.3.
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We note that by the homogeneity assumption Z3 and because we
disregard the case with p = Q, it was possible to normalize prices to the
simplex sr, the compact, convex domain of the mapping. Assumption Z4
(Walras's law) was used to prove that the fixed point is an equilibrium.
Hence assumptions Zl, Z3, and Z4 are sufficient for existence of an
equilibrium. However, models that fail to satisfy some of these may possess
solutions, as was illustrated in figures 1.ld and f.

The intuition behind the artificial function G(p) in the proof is to increase
the price Pk of a commodity that is in excess demand (Zk(P) > 0). However,
such a mapping should not be interpreted as a theory of the dynamics of
price adjustment. Producers and consumers carry out their plans only in
equilibrium; the model has no clear "out.of-equilibrium" interpretation; in
particular, no exchange is specified to take place out of equilibrium. In
section 1.2.5 we further discuss the issue when we consider computation of

equilibrium.
Since Zk(P*) ~ 0 in equilibrium, we do not exclude strict inequality and

hence allow for excess supply of some commodity. But then, as stated in
proposition 1.2, the associated price P: will be zero.

PROPOSmON 1.2 (Free goods) Under assumptions Zl, Z3, and Z4,
Zk(P*) < 0 implies that P: = o.

Proof In equilibrium z(p*)~O and p* ~o, so P:Zk(P*)~O for every k. Now,
if, for some k, Zk(P*) <0 and P:>O, then P:Zk(P*) <0. However, for Walras's
law to hold, it must be that P:Zh(P*) > 0 for at least one commodity. This
cannot happen, since P:Zk(P*) ~ 0 for every k, a contradiction. -

Proposition 1.2 shows that all goods in excess supply have a zero price.
Of course in the real world economy, they may have a positive price. For
example, on the labor market, unemployment may prevail at a positive wage
rate. We will return to this in chapter 6.

In the existence proof we do not use assumption Z5. However, when
excess demand is obtained from aggregation of consumers' and producers'
plans, it is difficult to maintain continuity of z(P) if the price of some
commodity is zero. We will make assumptions on consumers' utility
functions and endowments that make prices positive in equilibrium. We will
be interested only in goods that carry positive prices and will discard from
our model goods we know to be available freely.

PROPosmON 1.3 (Positive prices) Under assumptions Zl and Z3 to Z5,
equilibrium prices p* are positive.

Proof Evidently p: = 0 implies that Zk(P*) > 0 by assumption Z5 and this
cannot be an equilibrium. .
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Figure 1.2
The excess demand function Zl(Pl) in the two-commodity case.

When assumption Z5 holds, and if there are only two commodities, an
easy geometrical argument for existence of equilibrium can be given. Under
assumption Z5 no price can be zero in equilibrium. Since Pz = 1 -PI' we
can draw the curve Zl(Pl) = Zl(Pl' 1 -pJ, shown in figure 1.2. AtPl = 0,
we have Zl(PJ > 0, by assumption Z5; by continuity, Zl(PJ > 0 for Pl close
to zero. This makes it possible to start the curve above the Pi-axis. On the
other hand, for Pl = 1, Walras's law implies that Zl(Pl) = O. However, for
Pl close to 1, we have Pz close to zero, and therefore zz(PJ > 0, Zl(PJ < 0,
by Walras's law, where zz(PJ = ZZ(Pl' 1 -pJ. Hence Zl(PJ must lie under
the Pi-axis for Pl close to 1. Sincez1(Pl) is a continuous function, it must
cross the Pi-axis at least once, and there exists a value Pl (and pz), say,
pTE(O, 1) such that Zl(P!) = 0 (and zz(P!) = 0), again by Walras's law.

1.2.3 Multiplicity of Equilibrium

~

The multiplicity issue is important in applied modeling because we need to
know whether a change in parameter will lead to a unique new solution;
otherwise, the impact of the change is ambiguous. We also want this
solution to vary continuously under the change. We discuss multiplicity
under the additional assumption of continuous differentiability (assumption
Z2) and of desirability (assumption Z5). Clearly, for positive prices, continu-
ous differentiability implies single-valuedness and continuity.

Because of homogeneity (assumption Z3), we can normalize prices on the
simplex and define the price of commodity r residually. We define the excess
demand function for the r -1 commodities as

-~k*rPJ,Zk(P) = Zk(P l' PZ'

~


