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together in markets. First, we’ll consider price and quantity determination in a single market
or group of closely related markets. Then we'll assess those markets from a social point of
view. Along the way, we’ll pay special attention to the close relationship between a market’s
competitive structure and its social “performance.”

4.1 PerrecT COMPETITION

In perfectly competitive markets, buyers and sellers are sufficiently large in number to ensure
that no single one of them, alone, has the power to determine market price. Buyers and sellers
are price takers, and each decides on a self-interested course of action in view of individual
circumstances and objectives. A buyer’s demand for any one good is, as we’ve seen, the
outcome of a larger utility-maximizing plan over all goods subject to the budget constraint.
Similarly, a seller’s supply of that good is the outcome of an overall profit-maximizing
plan subject to the selling price of that good, technological possibilities and input prices.
Equilibrium in a competitive market thus requires the simultaneous compatibility of the
disparate and often conflicting self-interested plans of a large number of different agents.

The demand side of a market is made up of all potential buyers of the good, each with
their own preferences, consumption set, and income. We let 7 = {1,...,1}index the set of
individual buyers and q'(p,p, y')bei’s nonnegative demand for good q as a function of its
own price, p, income, y’, and prices, p, for all other goods. Market demand for q is simply
the sum of all buyers’ individual demands

(0= q'(p,p, y'). (4.1)

el

There are several things worth noting in the definition of market demand. First, g (p)
gives the total amount of q demanded by all buyers in the market. Second, because each
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buyer’s demand for ¢ depends not only on the price of ¢, but on the prices of all other goods
as well, so, too, does the market demand for ¢, though we will generally suppress explicit
mention of this. Third, whereas a single buyer’s demand depends on the level of her own
income, market demand depends both on the aggregate level of income in the market and
on its distribution among buyers. Finally, because individual demand is homogeneous of
degree zero in all prices and the individual’s income, market demand will be homogeneous
of degree zero in all prices and the vector of buyers’ incomes. Although several restrictions
on an individual’s demand system follow from utility maximization, homogeneity is the
only such restriction on the market demand for a single good.

The supply side of the market is made up of all potential sellers of g. However, we
sometimes distinguish between firms that are potential sellers in the short run and those
that are potential sellers in the long run. Earlier, we defined the short run as that period of
time in which at least one input (for example, plant size) is fixed to the firm. Consistent
with that definition, in the short-run market period, the number of potential sellers is fixed,
finite, and limited to those firms that “already exist” and are in some sense able to be up and
running simply by acquiring the necessary variable inputs. If we let 7 = {1, ..., J} index
those firms, the short-run market supply function is the sum of individual firm short-run
supply functions ¢’ (p, w):

(P =) 4 (p,w). (4.2)
jed

Market demand and market supply together determine the price and total quantity
traded. We say that a competitive market is in short-run equilibrium at price p* when
q‘(p*) =q*(p*). Geometrically, this corresponds to the familiar intersection of market
supply and market demand curves drawn in the (p, ¢) plane. Note that by construction of
market demand and market supply, market equilibrium is characterized by some interesting
and important features: Each price-taking buyer is buying her optimal amount of the good &
at the prevailing price, and each price-taking firm is selling its profit-maximizing outputat
the same prevailing price. Thus, we have a true equilibrium in the sense that no agent in the
market has any incentive to change his behavior—each is doing the best he can under the 3
circumstances he faces.

EXAMPLE 4.1 Consider a competitive industry composed of J identical firms. Firms pro- =
duce output according to the Cobb-Douglas technology, g =x%'~“ where x is some vari- -
able input such as labor, & is some input such as plant size, which is fixed in the short run, &8
and 0 <« < 1. In Example 3.6, we derived the firm’s short-run profit and supply functions
with this technology. At prices p, wy, and wy, maximum profits are '

ml = p'"mewelof 1o (1 — a)k — wik, (E.D)

and output supply is

qj g pa/l—-aw_t:/a—laafl—ak.
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Ifa=1/2, w,=4, and wy =1, then supposing each firm operates a plant of size

k=1, firm supply reduces to g/ = p/8. The market supply function with J =48 firms
will be

q* = 48(p/8) = 6p. (E.3)

Let market demand be given by

q* =294/p. (E.4)

We can use (E.1) through (E.4) to solve for the short-run equilibrium price, market quantity,
output per firm, and firm profits:

pt=1,
q* =42,
g’ =1/8,

7/ =2.0625 > 0.

This equilibrium, at both market and individual firm levels, is illustrated in Fig. 4.1. (Note
that short-run cost curves for firms with this technology can be derived from Exercise 3.34))
J

In the long run, no inputs are fixed for the firm. Incumbent firms—those already
producing—are free to choose optimal levels of all inputs, including, for example, the size
of their plant. They are also free to leave the industry entirely. Moreover, in the long run, new
firms may decide to begin producing the good in question. Thus, in the long run, there are
possibilities of entry and exit of firms. Firms will enter the industry in response to positive
long-run economic profits and will exit in response to negative long-run profits (losses).
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Figure 4.1. Short-run equilibrium in a single market.
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[n a long-run equilibrium, we shall require not only that the market clears but also
that no firm has an incentive to enter or exit the industry. Clearly, then, long-run profits
must be nonnegative; otherwise, firms in the industry will wish to exit. On the other hand,
because all firms have free access to one another’s technology (in particular, firms currently
not producing have access to the technology of every firm that is producing), no firm can
be earning positive profits in the long run. Otherwise, firms outside the industry will adopt
the technology of the firm earning positive profits and enter the industry themselves.

Thus, two conditions characterize long-run equilibrium in a competitive market:

i }
¢ (p)="y_a’ (P

j=1
i (p) =0, j=1 0 (4.3)

The first condition simply says the market must clear. The second says long-run profits for
all firms in the industry must be zero so that no firm wishes to enter or exit the industry. In
the short run, the number of firms is given and the market-clearing condition determines the = !
short-run equilibrium price. Note, however, that in the long run, the market-clearing and
zero-profit conditions together determine both long-run equilibrium price and the long-run 4
equilibrium number, J, of firms in the industry.

4 ‘!"“"‘-“'1"’& sag e

EXAMPLE 4.2 Let inverse market demand be the linear form

p =39 —0.009. (E.1)

Technology for producing 4 is identical for all firms, and all firms face identical input prices.
The long-run profit function for a representative firm is given by

2l (p) = p* — 25— 399, €D =}

so that its output supply function 18

d(p) (E3)

yl = =2p—2.
dp

Note that y/ > 0 requires p = 1. _
In the long run, market-equilibrium price p and the equilibrium number of firms J
must satisfy the two conditions (4.3). Thus, we must have

(1000/9)(39 — P) = j2p -2,
pr—2p—399=0.

[ o | ‘
From the zero-profit condition, we obtain =L Substituting into the market-cleanﬂg . 3

condition gives J = 50. From (E.3). each firm produces an output of 40 units in long'f“a;:-{
equilibrium. This market equilibrium s illustrated in Fig. 4.2.
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Price Market Price, cost
A A

Firm

39

nmc

q*=100p — 100

EXAMPLE 4.3 Let’s examine long-run equilibrium in the market of Example 4.1. There,
technology was the constant-returns-to-scale form, g =x“k'"® for x variable and k fixed
in the short run. Foro = 1/2, w, =4, and wy = 1, the short-run profit and short-run supply
functions reduce to

7l (p, k) = p*k/16 — k, (E.1)
q’ = pk/8. (E.2)

With market demand of
g =29%/p (E.3)

and 48 firms in the industry, we obtained a short-run equilibrium price of p* =7, giving
firm profits of 7/ =2.0625 > 0.

In the long run, firms may enter in response to positive profits and incumbent firms
are free to choose their plant size optimally. Market price will be driven to a level where
maximum firm profits are zero. From (E.1), we can see that regardless of the firm’s chosen
plant size, this will occur only when p =4 because

7(p k) =k(p?/16 — 1) =0 (E.4)
for all k > 0 if and only if p =4.

The market-clearing condition with J firms, each operating a plant of size k, requires
that ¢“(p) = g*(p). or

294 4};:—
4 8"
This is turn requires that
147 = Jk. (E.5)
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Because at p =4 firm profits are zero regardless of plant size &, long-run equilibrium is
consistent with a wide range of market structures indeed. From (E.4) and (E.S5), long-run
equilibrium may involve a single firm operating a plant of size k = 147, two firms each
with plants k = 147/2, three firms with plants k = 147/3, all the way up to any number J
of firms, each with a plant of size 147/J. This indeterminacy in the long-run equilibrium
number of firms is a phenomenon common to all constant-returns industries. You are asked
to show this in the exercises. a

4.2 IMPERFECT COMPETITION

Perfect competition occupies one polar extreme on a spectrum of possible market structures
ranging from the “more” to the “less” competitive. Pure monopoly, the least competitive
market structure imaginable, is at the opposite extreme. In pure monopoly, there is a single
seller of a product for which there are no close substitutes in consumption, and entry into
the market is completely blocked by technological, financial, or legal impediments.

The monopolist takes the market demand function as given and chooses price and
quantity to maximize profit. Because the highest price the monopolist can charge for any
given quantity, g, is inverse demand, p(q), the firm’s choice can be reduced to that of
choosing g, alone. The firm would then set price equal to p(q).

As a function of g, profit is the difference between revenue, r(g) = p(q)q, and cost,
c(q). That is, [1(g)=r(q) — c(q). If g* > 0 maximizes profit, it satisfies the first-order
condition IT'(g*)=r'(g*) — ¢/(¢*) =0. This, in turn, is the same as the requirement that
marginal revenue equal marginal cost:

mr(q*) = mc(q*). 4.4

Equilibrium price will be p* = p(g*), where p(q) is the inverse market demand function.
Let’s explore the monopolist’s output choice a bit further. Because r(g) = p(q)q,
differentiating to obtain marginal revenue gives

dp(q)
——— + —
mr(q) = p(gq)+gq da

dp(q) q ]
= ] 4 —22 1
p(q)[ * dq p(q)

= p(q)[l - ] @.3)

1
le(g)

where e(q) is the elasticity of market demand at output ¢, and |e(g)| = —(dq/dp)(p/q) >0
whenever market demand is negatively sloped. By combining (4.4) and (4.5), ¢* will satisfy

|
p(q*)[l - (q,)|] = me(q") 2 0 4.6)

because marginal cost is always nonnegative. Price is also nonnegative, so we must have

o

e bk
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me(q)
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mr(q*) = mc(q*)

le (q)1 >1 T le ()1 < 1
|€(([)|=1 mr(q)
Figure 4.3. Equilibrium in a pure monopoly.

le(g*)| = 1. Thus, the monopolist never chooses an output in the inelastic range of market
demand, and this is illustrated in Fig. 4.3.

Rearranging (4.6), we can obtain an expression for the percentage deviation of price
from marginal cost in the monopoly equilibrium:

p(q*) — mc(q*) _
pr(g*) le(g*)|’

4.7

When market demand is less than infinitely elastic, |e(g*)| will be finite and the monopolist’s
price will exceed marginal cost in equilibrium. Moreover, price will exceed marginal cost
by a greater amount the more market demand is inelastic, other things being equal.

As we’ve remarked, pure competition and pure monopoly are opposing extreme
forms of market structure. Nonetheless, they share one important feature: Neither the pure
competitor nor the pure monopolist needs to pay any attention to the actions of other firms
in formulating its own profit-maximizing plans. The perfect competitor individually cannot
affect market price, nor therefore the actions of other competitors, and so only concerns
itself with the effects of its own actions on its own profits. The pure monopolist completely
controls market price and output, and need not even be concerned about the possibility of
entry because entry is effectively blocked.

Many markets display a blend of monopoly and competition simultaneously. Firms
become more interdependent the smaller the number of firms in the industry, the easier
entry, and the closer the substitute goods available to consumers. When firms perceive
their interdependence, they have an incentive to take account of their rivals” actions and to
formulate their own plans strategically. In Chapter 7, we’ll have a great deal more to say
about strategic behavior and how to analyze it, but here we can take a first look at some of
the most basic issues involved.

When firms are behaving strategically, one of the first things we need to do is ask
ourselves how we should characterize equilibrium in situations like this. On the face of i,
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one might be tempted to reason as follows: Because firms are aware of their interdependence,
and because the actions of one firm may reduce the profits of others, won’t they simply
work together or collude to extract as much total profit as they can from the market and
then divide it between themselves? After all, if they can work together to make the profit
“pie” as big as possible, won’t they then be able to divide the pie so that each has at least
as big a slice as they could otherwise obtain? Putting the legality of such collusion aside,
there is something tempting in the idea of a collusive equilibrium such as this. However,
there is also a problem.

Let’s consider a simple market consisting of J firms, each producing output ¢/. We’ll
suppose each firm’s profit is adversely affected by an increase in the output of any other
firm, so that

=r11@',....q°,....q°) and 3I7/3¢* <0, j#k. (4.8)

Now suppose firms cooperate to maximize joint profits. If q q maximizes Z J, it must
satisfy the first-order conditions

aN*@) (@)
+ =0, k=1,...,J. 4.9)

dgk JZ#; dg*k

Note that (4.8) and (4.9) together imply

3T (q)
dg*

> 0, k=1,...,J.

Think what this means. Because each firm’s profit is increasing in its own output at g,
each can increase its own profit by increasing output away from its assignment under §—
provided, of course, that everyone else continues to produce their assignment under §! If
even one firm succumbs to this temptation, § will not be the output vector that prevails in
the market.

Virtually all collusive solutions give rise to incentives such as these for the agents
involved to cheat on the collusive agreement they fashion. Any appeal there may be in the
idea of a collusive outcome as the likely “equilibrium” in a market context is therefore
considerably reduced. It is perhaps more appropriate to think of self-interested firms as
essentially noncooperative. To be compelling, any description of equilibrium in imperfectly
competitive markets must take this into account.

The most common concept of noncooperative equilibrium is due to John Nash (1951).
In a Nash equilibrium, every agent must be doing the very best he or she can, given the
actions of all other agents. It is easy to see that when all agents have reached such a point,
none has any incentive to change unilaterally what he or she is doing, so the situation is
sensibly viewed as an equilibrium.

In a market situation like the ones we've been discussing, the agents concerned
are firms. There, we will not have a Nash equilibrium until every firm is maximizing
its own profit, given the profit-maximizing actions of all other firms. Clearly, the joint

P S




r

PARTIAL EQUILIBRIUM

161

profit-maximizing output vector § in (4.9) does not satisfy the requirements of a Nash
equilibrium because, as we observed, no firm’s individual profit is maximized at § given
the output choices of the other firms. Indeed, if q* is to be a Nash equilibrium, each firm’s
output must maximize its own profit given the other firms’ output choices. Thus, q* must
satisfy the first-order conditions:

ok (q*)
dq*

=0, k=1,...,J. 4.10)

Clearly, there is a difference between (4.9) and (4.10). In general, they will determine quite
different output vectors.

In what follows, we shall employ the Nash equilibrium concept ina number of different
settings in which firms’ decisions are interdependent.

4.2.1 COURNOT OLIGOPOLY

The following oligopoly model dates from 1838 and is due to the French economist Auguste
Cournot (1838). Here we consider a simple example of Cournot oligopoly in the market for
some homogeneous good. We'll suppose there are J identical firms, that entry by additional
firms is effectively blocked, and that each firm has identical costs,

C(qj)=cqj, c>0 and j=1...,J. 4.11)

Firms sell output on a common market, so market price depends on the total output sold by
all firms in the market. Let inverse market demand be the linear form,

J
p=a-b) g, (4.12)
i=l

where a > 0, b > 0, and we’ll require a > ¢. From (4.11) and (4.12), profit for firm j is
. J - I3
Fl’(q',....qj)=(a-—qu")q’—cq’. (4.13)
k=1

We seek a vector of outputs (g, . .., §;) such that each firm’s output choice is profit-
maximizing given the output choices of the other firms. Such a vector of outputs is called a
Cournot-Nash equilibrium. This name gives due credit to Cournot, who introduced this
solution to the oligopoly problem, and to Nash, who later developed the idea more generally.

So, if (§1,...,§s) is a Cournot-Nash equilibrium, G; must maximize (4.13) when
gk =gy for all k # j. Consequently, the derivative of (4.13) with respect to ¢ ; must be zero
when gy =g, forallk=1,...,J. Thus,

a—2bG;~bY G —c=0,
k]
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which can be rewritten

J
bjj=a—c—b) G- (4.14)
k=1

Noting that the right-hand side of (4.14) is independent of which firm j we are con-
sidering, we conclude that all firms must produce the same amount of output in equilibrium.
By letting g denote this common equilibrium output, (4.14) reduces to bg =a — ¢ — Jbq,
which implies that

a—c¢

T (4.15)

g =

By using (4.15), and doing a few calculations, the full set of market equilibrium values
namely, firm output, total output, market price, and firm profits are as follows:

Gl =@-co)/bJ+1), j=1,..., J,

J
Y g/ =J@-c)/bJ + 1),

j=1
p=a—Ja@a—c)/(J+1)<a,
1/ = (a — ¢)*/(J + 1)°b.

Equilibrium in this Cournot oligopoly has some interesting features. We can calculate
the deviation of price from marginal cost,

sl e o el (4.16)

and observe that equilibrium price will typically exceed the marginal cost of each identical
firm. When J = 1, and that single firm is a pure monopolist, the deviation of price from
marginal cost is greatest. At the other extreme, when the number of firms J — oo, (4.16)
gives

lim (p —c) = 0. 4.17)

J—oc

Equation (4.17) tells us that price will approach marginal cost as the number of competitors
becomes large. Indeed, this limiting outcome corresponds precisely to what would obtain
if any finite number of these firms behaved as perfect competitors. Thus, this simple model
provides another interpretation of perfect competition. It suggests that perfect competition
can be viewed as a limiting case of imperfect competition, as the number of firms becomes
large.

Al
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4.2.2 BERTRAND OLIGOPOLY

Almost 50 years after Cournot, another French economist, Joseph Bertrand (1883), offered
a different view of firm rivalry under imperfect competition. Bertrand argued it is much
more natural to think of firms competing in their choice of price, rather than quantity. This
small difference is enough to completely change the character of market equilibrium.

The issues involved stand out most clearly if we concentrate on rivalry between just
two firms. In a simple Bertrand duopoly, two firms produce a homogeneous good, each
has identical marginal costs ¢ > 0, and no fixed cost. Though not at all crucial, for easy
comparison with the Cournot case, we can again suppose that market demand is linear in
total output, Q, and write

Q=a-pgp,

where p is market price.

Firms simultaneously declare the prices they will charge and they stand ready to supply
all that’s demanded of them at their price. Consumers buy from the cheapest source. Thus,
the firm with the lowest price will serve the entire market demand at the price it has declared,
whereas the firm with the highest price, if prices differ, gets no customers at all. If both
firms declare the same price, then they share market demand equally, and each serves half.

Here each firm’s profit clearly depends on its rival’s price as well as its own. Taking
firm 1 for example, for all nonnegative prices below /8 (the price at which market demand
is zero), profit will be

(pl —C)(t’l’—ﬁpl). ¢ < P] < 1-,;,21
M'(p', p) = {4 =)@ - Bp!), ¢ <p'=p2
0, otherwise.

Note that firm 1’s profit is positive as long as its price exceeds marginal cost. Other
things being equal, it will be largest, of course, if firm 1 has the lowest price, and only half
as large if the two firms charge the same price. Its profit need never be negative, however,
because the firm can always charge a price equal to marginal cost and assure itself zero
profits at worst. The situation for firm 2 is symmetrical. Thus, we shall suppose that each
firm i restricts attention to prices p’ > c.

What is the Nash equilibrium in this market? It may be somewhat surprising, but in
the unique Nash equilibrium, both firms charge a price equal to marginal cost, and both earn
zero profit. Because profit functions here are discontinuous, we cannot argue the case by dif-
ferentiating and solving first-order conditions. Instead, we’ll Jjust use some common sense.

Note that because the firm with the lowest price serves the entire market, each firm
has an incentive to undercut its rival. It is this effect that ultimately drives the equilibrium
price down to marginal cost. We now provide the formal argument.

First, note that if each firm chooses its price equal to c, then this is a Nash equilibrium.
In this case, each firm serves half the market and earns zero profits because each unit is
sold at cost. Moreover, by increasing its price, a firm ceases to obtain any demand at all
because the other firm’s price is then strictly lower. Consequently, it is not possible to earn
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more than zero profits. Therefore, each firm’s price choice is profit-maximizing given the
other’s.

Next we argue that there are no other Nash equilibria. Because each firm i chooses
pi > c, it suffices to show that here are no equilibria in which p; > ¢ for some i. So let
(p1, p2) be an equilibrium.

If p; > c, then because p, maximizes firm 2’s profits given firm 1’s price choice,
we must have p; € (c, p1], because some such choice earns firm 2 strictly positive profits,
whereas all other choices earn firm 2 zero profits. Moreover, p; # p; because if firm 2 can
earn positive profits by choosing p; = p and splitting the market, it can earn even higher
profits by choosing p» just slightly below p; and supplying the entire market at virtually
the same price. Therefore,

p>c=>pr>c and P2 < p1.
But by switching the roles of firms 1 and 2, an analogous argument establishes that
pp>Cc=>p;>C and D1 < P2

Consequently, if one firm’s price is above marginal cost, both prices must be above marginal
cost and each firm must be strictly undercutting the other, which is impossible.

In the Bertrand model, price is driven to marginal cost by competition among just
two firms. This is striking, and it contrasts starkly with what occurs in the Cournot model,
where the difference between price and marginal cost declines only as the number of firms
in the market increases.

4.2.3 MONOPOLISTIC COMPETITION

Firms in both Cournot and Bertrand oligopolies sell a homogeneous product. In monopolis-
tic competition, a “relatively large” group of firms sell differentiated products that buyers
view as close, though not perfect, substitutes for one another. Each firm therefore enjoys a
limited degree of monopoly power in the market for its particular product variant, though
the markets for different variants are closely related. Firms produce their products with a
“similar” technology. In a monopolistically competitive group, entry occurs when a new
firm introduces a previously nonexistent variant of the product.

Assume a potentially infinite number of possible product variants j=1,2,.... The
demand for product j depends on its own price and the prices of all other variants. We’ll
write demand for j as

g/ = q/(p), wheredq’/dp’ < 0anddq’/dp* > Ofork # j, (4.18)

and p=(p',..., p’,...). In addition, we’ll assume there is always some price p/>0at
which demand for j is zero, regardless of the prices of the other products.
Clearly, one firm’s profit depends on the prices of all variants; being the difference

between revenue and cost:

IV (p) = ¢’ Pp’ — ¢/ (@’ (p)) (4.19)
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Two classes of equilibria can be distinguished in monopolistic competition: short-
run and long-run. In the short run, a fixed finite number of active firms choose price to
maximize profit, given the prices chosen by the others. In a long-run equilibrium, entry and
exit decisions can also be made. We consider each equilibrium in turn.

Let j=1,...,J be the active firms in the short run. For simplicity, set the price
“charged” by each inactive firm k to P* 1o ensure that each of them produces no output. (To
ease notation, we’ll drop explicit mention of inactive firms for the time being.)

Now suppose p=(p', ..., p’)is a Nash equilibrium in the short run. If P’/ = p/, then
¢’ (p)=0and firm j suffers losses equal to short-run fixed costs, [1/ = — ¢/(0). However,
if0<p’ < p/, then firm j produces a positive output and p must satisfy the first-order
conditions for an interior maximum of (4.19). These can be arranged in the form

d‘;}pgp) [mrj(qf(p)) - mcj(qj(f)))] =0, (4.20)

where we’ve made use of (4.5). Because dq’ /dp’ <0, this reduces to the familiar require-
ment that price and output be chosen to equate marginal revenue and marginal cost. As
usual, the monopolistic competitor may have positive, negative, or zero short-run profit.

In the long run, firms will exit the industry if their profits are negative. To analyze the
long run, we’ll assume that each variant has arbitrarily close substitutes that can be produced
at the same cost. Under this assumption, positive long-run profits for any single firm will
induce the entry of arbitrarily many firms producing close substitutes. As usual, long-run
equilibrium requires there to be no incentive for entry or exit. Consequently, because of our
assumption, maximum achievable profits of all firms must be negative or zero, and those of
every active firm must be exactly zero.

Suppose that p* is a Nash equilibrium vector of long-run prices. Then the following
two conditions must hold for all active firms j:

dq’ (p*)
ap’

[mri@’ (") — mc/ (@’ )] =0, @.21)
(g’ (p*) = 0. (4.22)

Both short-run and long-run equilibrium for a representative active firm are illus-
trated in Fig. 4.4, which shows the tangency between demand and average cost in long-run
equilibrium implied by (4.21) and (4.22).

4.3 EQuiuBrIUM AND WELFARE

To this point, we’ve been concerned with questions of price and quantity determination
under different market structures. We’ve examined the agents’ incentives and circumstances
under competition, monopoly, and other forms of imperfect competition, and determined
the corresponding equilibrium market outcome. In this section, we’ll shift our focus from
“prediction” to “assessment” and ask a different sort of question. Granted that different
market structures give rise to different outcomes, are there means to assess these different
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Figure 4.4. (a) Short-run and (b) long-run equilibrium in monopolistic competition.

market outcomes from a social point of view? Can we judge some to be “better” or “worse”
than others in well-defined and meaningful ways? To answer questions like these, our focus
must shift from the purely positive to the essentially normative.

Normative judgments invariably motivate and guide economic policy in matters rang-
ing from taxation to the regulation of firms and industries. When government intervenes
to change the laissez-faire market outcome, different agents will often be affected very
differently. Typically, some will “win” while others will “lose.” When the welfare of
the individual agent is an important consideration in formulating social policy, there are
really two sorts of issues involved. First, we have to ask the positive question: How will
the proposed policy affect the welfare of the individual? Second, we have to ask the much
more difficult normative question: How should we weigh the different effects on different
individuals together and arrive at a judgment of “society’s” interest? Here we’ll concentrate
on the first set of issues, and only dabble in the second, leaving their fuller treatment to a
later chapter.

4.3.1 PRICE AND INDIVIDUAL WELFARE

It is often the case that the effect of a new policy essentially reduces to a change in prices that
consumers face. Taxes and subsidies are obvious examples. To perform the kind of welfare
analysis we have in mind, then, we need to know how the price of a good affects a person’s
welfare. To keep things simple, let’s suppose the price of every other good except good
g remains fixed throughout our discussion. This is the essence of the partial equilibrium
approach.

So, if the price of good ¢ is p, and the vector of all other prices is p, then instead
of writing the consumer’s indirect utility as v(p, p, y), we shall simply write it as v(p, y)
Similarly, we shall suppress the vector p of other prices in the consumer’s expenditure
function, and in both her Hicksian and Marshallian demand functions. In fact, it will be
convenient to introduce a composite commodity, m, as the amount of income spent on

L
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all goods other than q-Ifx(p, p, y) denotes demand for the vector of all other goods, then
the demand for the composite commodity is m( PP, Y)=p-X(p, p, y), which we’ll denote
simply as m(p, y). In Exercise 4.16, you are asked to show that if the consumer’s utility
function over all goods, u(g, x), satisfies our standard assumptions, then the utility function
over the two goods q and m, ii(q, m)= maxy u(q, X) subject to P - X <m, also satisfies
those assumptions. Moreover, we can use i to analyze the consumer’s problem as if there
were only two goods, g and m. That is, the consumer’s demands for q and m, q(p, y) and
m(p, y), respectively, solve

max i(q, m) S.t. pqg+m=<y,

q.m

and the maximized value of 7 is v(p, y).

Consider now the following situation in which a typical practicing economist might
find himself. The local government is considering plans to modernize the community’s
Wwater-treatment facility. The planned renovations will improve the facility’s efficiency and
will result in a decrease in the price of water. The cost of the improvements will be offset
by a one-time “water tax.” The question is: Should the improvement be undertaken? If the
preferences of the community are central, the issue reduces to this: Would consumers be
willing to pay the additional tax to obtain the reduction in the price of water?

To answer this question, let’s SUppose our economist has water demand data for each
consumer. In particular, he knows each consumer’s Marshallian demand curve correspond-
ing to his current income level. It turns out that from this, he can determine quite accurately
how much each consumer would be willing to pay for the price reduction. Let’s see how
this is done.

Consider a particular consumer whose income is y°. Suppose that the initial price of
water is p° and that it will fall to p! as a result of the improvement project. By letting v
denote the consumer’s indirect utility function, v(p®, y°) denotes his utility before the price
fall and v(p', y°) his utility after. Now the amount of income the consumer is willing to
give up for the price decrease will be just enough so that at the lower price and income
levels he would be just as well off as at the initial higher price and income levels. Letting
CV denote this change in the consumer’s income that would leave him as well off after the
price fall as he was before, we have

v(p', YO+ CV) = v(p", y9). (4.23)

Note that in this example, CV is nonpositive because v is nonincreasing in p, increasing
in y, and p' < p° CV would be nonnegative for a price increase (p! > p°). In either case,
(4.23) remains valid. This change in income, CV, required to keep a consumer’s utility
constant as a result of a price change, is called the compensating variation, and it was
originally suggested by Hicks.

The idea is easily illustrated in the upper portion of Fig. 4.5, where the indifference
curves are those of it(q, m). The consumer is initially at A, enjoying utility v(p?, y°). When
price falls to p!, the consumer’s demand moves to point B and utility rises to v(p!, y°).
Facing the new price p!, this consumer’s income must be reduced to y° + CV (recall CV < 0
here) to return to the original utility level v(p", y%) at point C.
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W+cv
v(p',y%) = u(B) :
o0 = o(p’, %) = ii(A) = 7(C) !
|
= ]
p! 1
.
[
L
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Q(PU, yU) . qh(PO. L'O) ‘.
Figure 4.5. Prices, welfare, and consumer demand. ]

Equation (4.23) and Fig. 4.5 suggest another way to look at CV. Using the familiar
identity relating indirect utility and expenditure functions, and substituting from (4.23), we
must have i

e(p', v(p°, y") = e(p', v(p', y* + CV))
=y 4+ CV. (4.24)

Because we also know that y? =e(p?, v(p®, ¥°)), we can substitute into (4.24), rearrange,
and write

CV =e(p', ") — e(p°, vY), (4.25)

where we've let v° = v(p?, y°) stand for the consumer’s base utility level facing base prices
and income.
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Now we know that the Hicksian demand for good g is (by Shephard’s lemma) given
by the price partial of the expenditure function. From that and (4.25), we can write

CV =e(p', 1% — e(p°, v°)

_ fﬁ" de(p, v°) e
P" a])
4 A 0

= f} q"(p,v)dp. (4.26)
PI

Note then that when p' < p°, CV is the negative of the area to the left of the Hicksian
demand curve for base utility level v* between p! and p°, and if p! > p°, CV is positive
and simply equal to that area. This is taken care of automatically in (4.26) because one
must change the sign of the integral when the limits of integration are interchanged. In
Fig. 4.5, CV is therefore equal to the (negative of the) lightly shaded area between p° and
p'. Study (4.26) and Fig. 4.5 carefully. You'll see, as common sense suggests, that if price
rises (p > p°), a positive income adjustment will be necessary to restore the original utility
level (CV > 0), and if price declines (p < p°), a negative income adjustment will restore
the original utility level (CV <0).

The compensating variation makes good sense as a dollar-denominated measure of
the welfare impact a price change will have. Unfortunately, however, we’ve just learned
that CV will always be the area to the left of some Hicksian demand curve, and Hicksian
demand curves are not quite as readily observable as Marshallian ones. Of course, with
enough data on the consumer’s Marshallian demand system at different prices and income
levels, one can recover via integrability methods the consumer’s Hicksian demand and
directly calculate CV. However, our economist only has access to the consumer’s demand
curve for this one good corresponding to one fixed level of income. And this is not generally
enough information to recover Hicksian demand. '

Despite this, we can still take advantage of the relation between Hicksian and
Marshallian demands expressed by the Slutsky equation to obtain an estimate of CV. Re-
call that Marshallian demand picks up the total effect of a price change, and the Hicksian
only picks up the substitution effect. The two will generally therefore diverge, and diverge
precisely because of, the income effect of a price change. In the bottom portion of Fig. 4.5,
this is illustrated for the case where g is a normal good by the horizontal deviation between
the two curves everywhere but at p°.

We’d like to relate Hick’s idea of compensating variation to the notion of consumer
surplus, because the latter is easily measured directly from Marshallian demand. Recall
that at the price-income pair (p°, y°), consumer surplus, CS(p°, y°), is simply the area
under the demand curve (given y°) and above the price, p°. Consequently, the combined
shaded areas in Fig. 4.5 equal the gain in consumer surplus due to the price fall from p°to
p!. That is,

0

P
ACS = CS(p', y*) — CS(p°, y°) = [ q(p. y")dp. (4.27)
ds
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n\a 0.005 0010 0020 0030 0.040 0.050 0.075 0.100 0.150

-101 -0.003 -0.005 -0.010 -0.015 -0.019 -0.024 -0.035 -0.046 0.066
0.50  0.001 0.003 0005 0008 0010 0013 0019 0025 0038
070  0.002 0004 0.007 0011 0.014 0.018 0.027 0.035 0.054
0.90 0002 0005 0009 0014 0018 0.023 0034 0.046 0.070
1.01 0003 0005 0010 0.015 0020 0.026 0.039 0052 0.080
1.10 0003 0.006 0011 0.017 0022 0.028 0.043 0.057 0.088
120 0003 0006 0.012 0018 0.024 0.031 0.047 0.063 0.097
1.50 0.004 0.008 0015 0.023 0.031 0.039 0.059 0.080 0.125
200 0005 0010 0020 0.031 0.042  0.053 0.081 0.111 0.176

Figure 4.6. Each entry gives the error as a fraction of consumer surplus, (CV — ACS)/ACS, by
different values of income elasticity of demand, #, and consumer surplus as a fraction of base
income, a = |ACS|/y°. Source: Willig (1976).

As you can see, ACS will always be opposite in sign to CV, and it will diverge in
absolute value from CV whenever demand depends in any way on the consumer’s income,
due to the income effect of a price change. Because we want to know CV but can only
calculate ACS, a natural question immediately arises. How good an approximation of CV
does ACS provide?

Willig (1976) studied this question and reported some useful results. He finds that
when income elasticity of demand is independent of price, the absolute value of CV will
diverge from that of ACS, but the former can be calculated exactly from knowledge of the
latter.! More generally, for arbitrary demand functions, Willig shows that we can calculate
upper and lower bounds on the size of the error we are making when we use —ACS as an
approximation to CV. The helpful fact is this: For small price changes, the size of the error
one makes when using —ACS instead of CV is usually so small that one can, “without
apology,” simply ignore it. Some of Willig’s numerical results are reproduced in Fig. 4.6.
Study them carefully, and remember that for a small change in the price of a single good in
the consumer’s budget, the proportion a = | ACS|/y° is likely to be very small indeed.

Let’s return to our example. These approximation results suggest that as long as the
price reduction from p® to p! is not too large, our economist can obtain a very good estimate
indeed of each consumer’s willingness to pay for it. Based on this, an informed decision
can be made as to who is taxed and by how much.

Before moving on, a word of wamning: When only the market demand curve, as
opposed to individual demand curves, is known, the change in consumer surplus (again
for small price decreases, say) will provide a good approximation to the total amount of
income that consumers are willing to give up for the price decrease. However, it may well
be that some of them are willing to give up more income than others (heavy water users, for
example). Consequently, market demand analysis might well indicate that total willingness
to pay exceeds the total cost of the project, which would imply that there is some way to
distribute the cost of the project among consumers so that everyone is better off after paying

ISee Exercise 4.18.
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their part of the cost and enjoying the lower price. However, it would give no hint as to how
that total cost should be distributed among consumers.

4.3.2 EFFICIENCY OF THE COMPETITIVE OUTCOME

In the example just considered, it seemed clear that the project should be implemented if
after taking account of both the costs and benefits, everyone could be made better off. In
general, when it is possible to make someone better off and no one worse off, we say that a
Pareto improvement can be made. If there is no way at all to make a Pareto improvement,
then we say that the situation is Pareto efficient. That is, a situation is Pareto efficient if
there is no way to make someone better off without making someone else worse off.

The idea of Pareto efficiency is pervasive in economics and it is often used as one
means to evaluate the performance of an economic system. The basic idea is that if an
economic system is to be considered as functioning well, then given the distribution of
resources it determines, it should not be possible to redistribute them in a way that results
in a Pareto improvement. We shall pursue this idea more systematically in the next chapter.
For now, we’ll limit ourselves to the following question: Which, if any, of the three types of
market competition—perfect competition, monopoly, or Cournot oligopoly—function well
in the sense that they yield a Pareto-efficient outcome?

Note that the difference between the three forms of competition is simply the prices
and quantities they determine. For example, were a perfectly competitive industry taken over
by a monopolist, the price would rise from the perfectly competitive equilibrium price to the
monopolist’s profit-maximizing price and the quantity of the good produced and consumed
would fall. Note, however, that in both cases, the price—quantity pair is a point on the market
demand curve. The same is true of the Cournot-oligopoly solution. Consequently, we might
just as well ask: Which price-quantity pairs on the market demand curve yield Pareto-
efficient outcomes? We now direct our attention toward providing an answer to this question.

To simplify the discussion, we shall suppose from now on that there is just one pro-
ducer and one consumer. (The arguments generalize.) Refer now to Fig. 4.7, which depicts
the consumer’s (and therefore the market) Marshallian demand g(p, y°), his Hicksian-
compensated demand g"(p, v°), where v® = v(p°, y°), and the firm’s marginal cost curve,
mc(q). Note then that if this firm behaved as a perfect competitor, the equilibrium price-
quantity pair would be determined by the intersection of the two curves, because a compet-
itive firm’s supply curve coincides with its marginal cost curve above the minimum of its
average variable costs. (We’ve assumed that average variable costs are minimized at g = 0.)

Consider now the price—quantity pair (p°, g°) on the consumer’s demand curve above
the competitive point in Fig. 4.7. We'd like to argue that this market outcome is not Pareto
efficient. To do so, we need only demonstrate that we can redistribute resources in a way
that makes someone better off and no one worse off.

So, consider reducing the price of ¢ from p° to p'. What would the consumer be
willing to pay for this reduction? As we now know, the answer is the absolute value of the
compensating variation, which, in this case, is the sum of areas A and B in the figure. Let
us then reduce the price to p' and take A + B units of income away from the consumer.
Consequently, he is just as well off as he was before, and he now demands ¢' units of the
good according to his Hicksian-compensated demand.
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Figure 4.7. Inefficiency of monopoly equilibrium.

To fulfill the additional demand for g, let’s insist that the firm produce just enough
additional output to meet it.

So, up to this point, we’ve lowered the price to p', increased production to ¢', and
collected A + B dollars from the consumer, and the consumer is just as well off as before
these changes were made. Of course, the price—quantity change will have an effect on the
profits earned by the firm. In particular, if c(g) denotes the cost of producing ¢ units of
output, then the change in the firm’s profits will be

[p'q' — @] - [°4° - c(@®] = [p'q" — P°4°] — [c(g") — c(g)]
ql

=[p'qe' - P°¢°] - f mc(q)dq
q(l

—[C+D—-A]l-D
=C - A.

Consequently, if after making these changes, we give the firm A dollars out of the
A + B collected from the consumer, the firm will have come out strictly ahead by C dollars.
We can then give the consumer the B dollars we have left over so that in the end, both the
consumer and the firm are strictly better off as a result of the changes we’ve made.

Thus, beginning from the market outcome (p°, ¢®), we have been able to make both
the consumer and the firm strictly better off simply by redistributing the available resources.
Consequently, the original situation was not Pareto efficient.

A similar argument applies to price—quantity pairs on the consumer’s Marshallian de-
mand curve lying below the competitive point.2 Hence, the only price—quantity pair that can
possibly result in a Pareto-efficient outcome is the perfectly competitive one—and indeed
it does. We shall not give the argument here because it will follow from our more general
analysis in the next chapter. However, we encourage the reader to check that the particular

2See Exercise 4.21.
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scheme used before to obtain a Pareto improvement does not work when one begins at the
competitive equilibrium. (No other scheme will produce a Pareto improvement either.)

Thus, our conclusion is that the only price—quantity pair yielding a Pareto-efficient
outcome is the perfectly competitive one. In particular, neither the monopoly outcome nor
the Cournot-oligopoly outcome is Pareto efficient.

Note well that we cannot conclude from this analysis that forcing a monopoly to
behave differently than it would choose to must necessarily result in a Pareto improvement.
It may well lower the price and increase the quantity supplied, but unless the consumers
who are made better off by this change compensate the monopolist who is made worse off,
the move will not be Pareto improving.

4.3.3 EFFICIENCY AND TOTAL SURPLUS MAXIMIZATION

We’ve seen that consumer surplus is close to being a dollar measure of the gains going to the
consumer as a result of purchasing the good in question. It is easier to find an exact way to
measure the dollar value to the producer of selling the good to the consumer. This amount,
called producer surplus, is simply the firm’s revenue over and above its variable costs.

Now it would seem that to obtain an efficient outcome, the total surplus—the sum of
consumer and producer surplus—must be maximized. Otherwise, both the producer and the
consumer could be made better off by redistributing resources to increase the total surplus,
and then dividing the larger surplus among them so that each obtains strictly more surplus
than before.

But we must take care. Consumer surplus overstates the dollar benefits to the consumer
whenever income effects are present and the good is normal. Despite this, however, under
the assumption that demand is downward-sloping and the firm’s marginal costs are rising,
efficiency will not be achieved unless the sum of consumer and producer surplus is indeed
maximized.

To see this, consider again the case of a single consumer and a single producer
represented in Fig. 4.8 and consider an arbitrary price-quantity pair (p, ¢) on the demand
curve (sothat p = p(q), where p(-) is inverse demand). Earlier we defined consumer surplus
at (p, q) as the area under the demand curve and above the price p. It is easy to see that we
can express that same area, and so consumer surplus, as the area under the inverse demand
curve up to g minus the area of the rectangle p(g)q. Thus, we may express the sum of
consumer and producer surplus as’

q
CS + PS = [ fo p(E)dE — p(q)q] + [p(g)q — ve(q))
q
- fo p() dE — ve(q)

q
- fo [p(&) — me(®)) dE.

3The last line follows because [y mc(§)dé = c(q) — c(0), and ¢(0). Because ¢(0) is fixed cost, and ¢(q) is total
cost, the difference c{g) — c(0) is total variable cost, tvc(q).
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Figure 4.8. Consumer plus producer Price
surplus is maximized at the competitive + mc(q)
market equilibrium.

Choosing ¢ to maximize this expression leads to the first-order condition

p(q) = mc(q),

which occurs precisely at the perfectly competitive equilibrium quantity when demand is
downward-sloping and marginal costs rise, as we’ve depicted in Fig. 4.8.

In fact, it is this relation between price and marginal cost that is responsible for the
connection between our analysis in the previous section and the present one. Whenever
price and marginal cost differ, a Pareto improvement like the one employed in the previous
section can be implemented. And, as we’ve just seen, whenever price and marginal cost
differ, the total surplus can be increased.

Once again, a warning: Although Pareto efficiency requires that the total surplus be
maximized, a Pareto improvement need not result simply because the total surplus has
increased. Unless those who gain compensate those who lose as a result of the change, the
change is not Pareto improving.

We’ve seen that when markets are imperfectly competitive, the market equilibrium
generally involves prices that exceed marginal cost. However, “price equals marginal cost” is
a necessary condition for a maximum of consumer and producer surplus. It should therefore
come as no surprise that the equilibrium outcomes in most imperfectly competitive markets
are not Pareto efficient.

EXAMPLE 4.4 Let’s consider the performance of the Cournot oligopoly in Section 4.2.1.
There, market demand is p =a — bq for total market output g. Firms are identical, with
marginal cost ¢>0. When each firm produces the same output g/J, total surplus,
W =cs + ps, as a function of total output, will be

q q/J
W(g) = f (a—b&)dE — J f cdé,
0 0

which reduces to

W(g) = aq — (b/2)q* — cq. (E.1)
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Because (E.1) is strictly concave, total surplus is maximized at q* =(a—c)/b, where
W’(g*)=0. Thus, the maximum potential surplus in this market will be

. (a s (,‘)2
W(q") = T (E.2)
In the Cournot-Nash equilibrium, we’ve seen that total market output will be g =
J(@—c)/(J + 1b. Clearly, § < q*, so the Cournot oligopoly produces too little output
from a social point of view. Total surplus in the Cournot equilibrium will be

(@a—c)P J*+2J

W) == (J + 12

(E.3)

with a dead weight loss of

(a — c¢)?

W@ -Ww@G) = —2
(@) — W) T

0. (E4)

By using (E.3), itis easy to show that total surplus increases as the number of firms in
the market becomes larger. Before, we noted that market price converges to marginal cost
as the number of firms in the oligopoly becomes large. Consequently, total surplus rises
toward its maximal level in (E.2), and the dead weight loss in (E.4) declines to zero, as
J — o0. -

4.1

4.2

43

4.4

4.5

4.6

4.7

Suppose that preferences are identical and homothetic. Show that market demand for any good must
be independent of the distribution of income. Also show that the elasticity of market demand with
respect to the level of market income must be equal to unity.

Suppose that preferences are homothetic but not identical. Will market demand necessarily be inde-
pendent of the distribution of income?

Show that if g is a normal good for every consumer, the market demand for q will be negatively sloped
with respect to its own price.

Suppose that x and y are substitutes for all but one consumer. Does it follow that the market demand
for x will be increasing in the price of y?

Show that the long-run equilibrium number of firms is indeterminate when all firms in the industry
share the same constant returns-to-scale technology and face the same factor prices.

A firm j in a competitive industry has total cost function c/(g)=aq +b;q*, where a >0, g is firm
output, and b; is different for each firm.

(@) If b; >0 for all firms, what governs the amount produced by each of them? Will they produce
equal amounts of output? Explain.

(b) What happens if b; < 0 for all firms?

Technology for producing ¢ gives rise to the cost function ¢(q) =aq + bg*. The market demand for
qis p=a—pq.
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(a) Ifa>0,if b <0, and if there are J firms in the industry, what is the short-run equilibrium market
price and the output of a representative firm?

(b) If a >0 and b <0, what is the long-run equilibrium market price and number of firms? Explain.
(c) If a>0and b > 0, what is the long-run equilibrium market price and number of firms? Explain.

In the Cournot oligopoly of Section 4.2.1, suppose that J = 2. Let each duopolist have constant average
and marginal costs, as before, but suppose that 0 < ¢! < ¢2. Show that firm 1 will have greater profits
and produce a greater share of market output than firm 2 in the Nash equilibrium.

In a Stackelberg duopoly, one firm is a “leader” and one is a “follower.”” Both firms know each
other’s costs and market demand. The follower takes the leader’s output as given and picks her own
output accordingly (i.e., the follower acts like a Cournot competitor). The leader takes the follower’s
reactions as given and picks her own output accordingly. Suppose that firms 1 and 2 face market
demand, p = 100 — (g, + g;). Firm costs are ¢; = 10, and c; =¢3.

(a) Calculate market price and each firm’s profit assuming that firm 1 is the leader and firm 2 the
follower.

(b) Do the same assuming that firm 2 is the leader and firm | is the follower.

(c) Given your answers in parts (a) and (b), who would firm 1 want to be the leader in the market?
Who would firm 2 want to be the leader?

(d) If each firm assumes what it wants to be the case in part (c), what are the equilibrium market price
and firm profits? How does this compare with the Cournot-Nash equilibrium in this market?

(Stackelberg Warfare) In the market described in Section 4.2.1, let J = 2.

(a) Show that if, say, firm | is leader and firm 2 is follower, the leader earns higher and the follower
earns lower profit than they do in the Cournot equilibrium. Conclude that each would want to be
the leader.

(b) If both firms decide to act as leader and each assumes the other will be a follower, can the
equilibrium be determined? What will happen in this market?

In the Cournot market of Section 4.2.1, suppose that each identical firm has cost functionc(g) =& +¢q,

where & > 0 is fixed cost.

(a) What will be the equilibrium price, market output, and firm profits with J firms in the market?

(b) With free entry and exit, what will be the long-run equilibrium number of firms in the market?

In the Bertrand duopoly of Section 4.2.2, market demand is Q@ =« — 8p, and firms have no fixed

costs and identical marginal cost. Find a Bertrand equilibrium pair of prices, (p;, p2), and quantities,
(41, g2), when the following hold.

(a) Firm 1 has fixed costs F > 0.
(b) Both firms have fixed costs F > 0.

(c) Fixed costs are zero, but firm 1 has lower marginal cost than firm 2, so ¢; > ¢; > 0. (For this one,
assume the low-cost firm captures the entire market demand whenever the firms charge equal
prices.)

Duopolists producing substitute goods ¢, and g, face inverse demand schedules:
Ppn=20+31p—q

and

p2=20+1p —qa,

nea b ot r o
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respectively. Each firm has constant marginal costs of 20 and no fixed costs. Each firm is a Cournot
competitor in price, not quantity. Compute the Cournot equilibrium in this market, giving equilibrium
price and output for each good.

An industry consists of many identical firms each with cost function c(q) = g + 1. When there are J
active firms, each firm faces an identical inverse market demand p = 10 — 15 — (J — 1)§ whenever
an identical output of ¢ is produced by each of the other (J/ — 1) active firms.

(a) With J active firms, and no possibility of entry or exit, what is the short-run equilibrium output
q* of a representative firm when firms act as Cournot competitors in choosing output?

(b) How many firms will be active in the long run?
Whenfirms j =1, ..., J areactive in a monopolistically competitive market, firm j faces the following
demand function:
-2
L i
; n=2 - .
= . i=n.l
=
i#)
Active or not, each of the many firms j =1, 2, ... has identical costs,
(@) =cq +k,
where ¢ > 0 and & > 0. Each firm choses its price to maximize profits, given the prices chosen by the
others.

(a) Show that each firm’s demand is negatively sloped, with constant own-price elasticity, and that
all goods are substitutes for each other.

(b) Show that if all firms raise their prices proportionately, the demand for any given good declines.
(c) Find the long-run Nash equilibrium number of firms.

Suppose that a consumer’s utility function over all goods, u(q, x), is continuous, strictly increasing,
and strictly quasiconcave, and that the price p of the vector of goods, x, is fixed. Let m denote the

composite commeodity p - X, so that m is the amount of income spent on x. Define the utility function
i1 over the two goods ¢ and m as follows.

fi{g, m) = max u(q, x) subjecttop-x < m.
b 4

(a) Show that ii(g, m) is strictly increasing and strictly quasiconcave. If you can, appeal to a theorem
that allows you to conclude that it is also continuous.

(b) Show that if g(p, p, y) and x(p, p, y) denote the consumer’s Marshallian demands for ¢ and x,
then, g(p, p, y) and m(p, p, y)=p - x(p, p, y) solve

max i(q, m) S.t. pg+m<=<y.
q.m

and that the maximized value of i is v(p, p. y).
(c) Conclude that when the prices of all but one good are fixed, one can analyze the consumer’s

problem as if there were only two goods, the good whose price is not fixed, and the composite
commodity, “money spent on all other goods.”

Let (g% x°) > 0 maximize u(q, x) subject to p°g + p®-x < y°. Show that if u is differentiable at
(¢°, x®) and Vit(g®, x°) >> 0, then the consumer would be willing to pay strictly more than (p° — p')q°
for a reduction in the price of good ¢ to p'.
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Willig has shown that when income elasticity of demand is independent of price, so that

dg(p,y) vy

dy  q(p,y) =)

for all p and y in the relevant region, then for base price p° and income y°, CS and CV are related.

exactly, as follows:
VP ¢
—ACS = f exp (— ”(E)d&') de.
40 W &
(a) Show that when income elasticity is constant but not equal to unity,

1/(1=n)
0 —ACS ' 0
CV=y T(I—~r;)+1 - O

(b) Use this to show that when demand is independent of income, —ACS = CV, so consumer surplus
can then be used to obtain an exact measure of the welfare impact of a price change.

(c) Derive the relation between CV and ACS when income elasticity is unity.

(d) Finally, we can use the result in part (a) to establish a convenient rule of thumb that can be used to
quickly gauge the approximate size of the deviation between the change in consumer surplus and
the compensating variation when income elasticity is constant. Show that when income elasticity
is constant and not equal to unity, we'll have (CV — |ACS|)/|ACS| = (n|ACS|)/2)°.

A consumer has preferences over the single good x and all other goods m represented by the utility

function, u(x, m)=In(x)+m. Let the price of x be p, the price of m be unity, and let income

be y.

(a) Derive the Marshallian demands for x and m.

(b) Derive the indirect utility function, v(p, y).

(c) Use the Slutsky equation to decompose the effect of an own-price change on the demand for x
into an income and substitution effect. Interpret your result briefly.

(d) Suppose that the price of x rises from p” to p' > p°. Show that the consumer surplus area between
p” and p’ gives an exact measure of the effect of the price change on consumer welfare.

(e) Carefully illustrate your findings with a set of rwo diagrams: one giving the indifference curves
and budget constraints on top, and the other giving the Marshallian and Hicksian demands below.
Be certain that your diagrams reflect all qualitative information on preferences and demands that
you've uncovered. Be sure to consider the two prices p” and p', and identify the Hicksian and
Marshallian demands.

A consumer’s demand for the single good x is given by x(p, y) = y/p, where p is the good’s price,
and y is the consumer’s income. Let income be $7. Find the compensating variation for an increase
in the price of this good from $1 to $4.

Use a figure similar to Fig. 4.7 to argue that price—quantity pairs on the demand curve below the
competitive price—quantity pair are not Pareto efficient.

A monopolist faces linear demand p =« — g and has cost C =cq + F, where all parameters are
positive, @ > ¢, and (@ — ¢)* > 48F.

(a) Solve for the monopolist’s output, price, and profits.

(b) Calculate the deadweight loss and show that it is positive.
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(c) If the government requires this firm to set the price that maximizes the sum of consumer and
producer surplus, and to serve all buyers at that price, what is the price the firm must charge?
Show that the firm’s profits are negative under this regulation, so that this form of regulation is
not sustainable in the long run.

(Ramsey Rule) Building from the preceding exercise. suppose a monopolist faces negatively sloped
demand. p = p(q), and has costs C = cq + F. Now suppose that the government requires this firm to
seta price (p°) that will maximize the sum of consumer and producer surplus, subject to the constraint
that firm profit be nonnegative, so that the regulation is sustainable in the long run. Show that under
this form of regulation, the firm will charge a price greater than marginal cost, and that the percentage
deviation of price from marginal cost ((p* —c)/p*) will be proportional to 1/€*, where €* is the
elasticity of firm demand at the chosen price and output. Interpret your result.

Suppose that (5. §) are equilibrium market price and output in a perfectly competitive market with
only two firms. Show that when demand is downward-sloping and marginal costs rise, (5, §) satisfy
the second-order conditions for a maximum of consumer plus producer surplus.

(Welfare Bias in Product Selection) A monopolist must decide between two different designs for its
product. Each design will have a different market demand and different costs of production. If design
x| is introduced, it will have market demand and costs of

2
—+6;—p. if0<p <61,

X = I;’
=, if py > 61,
P
c(x) = 5% + Xx;.

If design x: is introduced, it will have the following market demand and costs:

a7 i
X2 =75 — lgpa

(.‘3(.1'3) = 4% + x,.

Note that the only difference in costs between these two designs is a difference in fixed costs.

(a) Calculate the price the firm would charge and the profits it would make if it introduced each
design. Which design will it introduce?

(b) Carefully sketch the demand and marginal cost curves for both designs on the same set of axes.
Does the firm’s choice maximize consumer plus producer surplus? Is the outcome Pareto efficient?

A competitive industry is in long-run equilibrium. Market demand is linear, p =a — bQ. where
a>0,b>0, and Q is market output. Each firm in the industry has the same technology with cost
function, c(q) =k +¢>.

(a) What is the long-run equilibrium price? (Assume what's necessary of the parameters to ensure
that this is positive and less than a.)

(b) Suppose that the government imposes a per-unit tax, 7 > 0, on every producing firm in the industry.
Describe what would happen in the long run to the number of firms in the industry. What is the
posttax market equilibrium price? (Again, assume whatever is necessary to ensure that this is
positive and less than a.)

(c) Calculate the long-run effect of this tax on consumer surplus. Show that the deadweight loss from
this tax exceeds the amount of tax revenue collected by the government in the posttax market
equilibrium.
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(d) Would alump-sum tax, levied on producers and designed to raise the same amount of tax revenue,
be preferred by consumers? Justify your answer.

(e) State the conditions under which a lump-sum tax, levied on consumers and designed to raise the
same amount of revenue, would be preferred by consumers to either preceding form of tax.

A per-unit tax, ¢ > 0, is levied on the output of a monopoly. The monopolist faces demand, g = p~¢
where € > 1, and has constant average costs. Show that the monopolist will increase price by more
than the amount of the per-unit tax.

A firm under uncertainty faces gambles of the form g =(p, o 7y, ..., p, o 7,), where the 7; are
profits and the p; their probabilities of occurrence. The firm’s owner has a VNM utility function over
gambles in profit, and she is an expected utility maximizer. Prove that the firm’s owner will always
act to maximize expected profit if and only if she is risk neutral.

Consider a two-period monopoly facing the negatively sloped inverse demand function pr=plq) in
each period r=1,2. The firm maximizes the present discounted value of profits, PDV =
Z,=o(l +r)7'm,, where r >0 is the market interest rate, and =, is period-t profit. In each of the
following, assume that costs each period are increasing in that period’s output and are strictly convex,
and that PDV is strictly concave,

(a) If costs are ¢, =c(q;) for t =0, 1, show that the firm will “short-run profit maximize” in each
period by choosing output to equate marginal cost and marginal revenue in each period.

(b) Now suppose that the firm can “learn by doing.” Its first period costs are simply co = co(go). Its
second-period costs, however, depend on first period output; ¢, = ¢,(g,, go), where 8¢, /3go <O.
Does the firm still “short-run profit maximize” in each period? Why or why not? Interpret your
results.
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