Chapter 12

General Equilibrium with
Uncertainty

12.1 Introduction

In this chapter we will make a brief foray into the theory of general equilibrium with
uncertainty. If you remember the discussion of Chapter 2, you will recall that in
general equilibrium theory, a commodity is defined by (1) its physical description,
(2) its location, (3) the time at which it is available, and (4) the state of the world
in which it is available. Consequently, in most of this chapter we are spectalizing
the theory which we have been studying; putting more structure into the model in
order to account for the effects of uncertainty. Of course, when one delves more
deeply into this theory, questions arise which did not appear to be relevant in our
earlier studies. Moreover, if we were to pursue the subject to its current frontiers,
we would find that new theoretical concepts and tools are needed to provide answers
for these questions. However, in the interests of practicality, we will only attempt to
provide a ‘bare bones’ introduction to this theory. Fortunately, in even this cursory
introduction to the topic, we will find that some interesting issues and applications
can be discussed. We will begin our discussion with what is known as the ‘Arrow-
Debreu Contingent Commodities Model.’

12.2 Arrow-Debreu Contingent Commodities

The crux of this model is that we suppose that there are two periods, t = 0,1. At
t =0, it is supposed that we can set forth all possibilities for the state of the world
at the second date, t = 1. We assume that there is a finite set, S, of such possible
states, and we will also write S = #35; denoting states by lower case ‘s, §',’ etc. Each
‘state’ is a complete description of the world, and in this theory, we suppose that
every agent will know which state, s € S has occurred once we reach ¢ = 1.

We will suppose that there are G physically distinguishable commodities (which,
in principle could also be distinguished by location), so that ‘n,’ the dimension of
our commodity space becomes:

n=S-G.
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Commodity bundles then take the form:

T = [Illy"'vzlcvz'.’ly-'-1'5.9_0)-'-1zSG)v

which is understood to be an entitlement to receive the commodity bundle:
Ty = (zsly 000 ,IQG)v

if state s occurs. Thus ‘z,,’ denotes the amount of commodity g to be received (or
supplied, if z,, < 0) if state s occurs.

In further specifying the economy, we will depart from our previous notation to
denote consumer #’s resource endowment, by ‘w;,” which now takes the form:

Wi = (Will, - - - Wi Wil - - - s Wisgy - - - » WiSG)s (12.1)

that is, ‘w;s,’ denotes consumer i's endowment of the ¢'" commodity if state s occurs.
Fortunately, we will rarely have to write out the full vector as we've done in (12.1),
above. Defining

Wis = (Wisly .. -wisg) fors=1,...,85;

that is, letting ‘w;,’ denote i’s endowment if state s occurs, the finest detail we will
usually write out is:
wi = (Wi, ..., Wis, -+, WiS).

We suppose also that the consumer’s preferences describe a weak order over X,
denoted by ‘. Furthermore, we denote the i** consumer’s consumption bundle,
contingent upon the occurrence of state s by ‘x;,;’ so that we can write:

T = (:!:.'1,...,2:",,...,3,'3).

Similarly, we will let ‘Y; C R™ denote the feasible production plans for the kth
firm, and we will use the generic notation:

Yk = (yklv'”»ykus-. ’ 1yk.‘3')| (122)

to denote elements of Yi, where ‘y;,’ denotes the production vector of the firm,
contingent upon the occurence of state s. We then complete the model, departing
from our previous notation,! by letting ‘6;;’ denote the i*" consumer’s share in the
kth firm’s profits.

We will have to be a bit careful in dealing with individual consumption and pro-
duction sets. One is tempted, for example to express the i** consumer’s consumption
set as:

S
Xi=]I_, X (12.3)

where ‘X;,” denotes the i** consumer’s feasible consumption set if state s occurs;
with similar specifications for the firms’ production sets. That this will not quite do
is perhaps best illustrated by considering the following production example, which
is inspired by Mas-Colell, Whinston, and Green [1995, Example 19.B.2, p. 689].

"This change i8 made in order that the i** consumer’s shares not be confused with the i'" state
of the world.
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12.1 Example. Suppose there are two states, s, and 32, representing good and bad
weather. There are two physical commodities: seeds (g = 1) and crops (g = 2). In
this case, the elements of Y; are four-dimensional vectors. Assume that seeds must
be planted before the resolution of the uncertainty about the weather and that if
the weather is good, the firm’s production possibilities are given by:

Yia = {¥e1 € R? | praz 2 0 & 24511 + yra2 < 0);
whereas in bad weather, production is given by:
Yio = {¥x2 € R? | ya22 2 0 & yrn + 2422 < O}

Recalling our assumption that the seed must be planted before the resolution of
uncertainty, we see that we can represent the firm'’s production set as:

Ye = {wx € Y1 x Va2 | yk11 = k1 }- (12.4)

Thus, for example, the production vector:

Vi = (Yk11, Ur12, Yk2r, We22) = (—2,4,-2,1),

is a feasible plan; whereas neither of the production plans:
Vi = (—4,8,-2,1) and ¢’ = (—2,4,0,0),
is feasible.

While the above example deals with a production set, the difficulty applies
equally to consumption sets; after all, someone has to plant the seeds, and this
labor must also be undertaken before the resolution of uncertainty. In order to al-
low for this fact, while yet being able to assume on some occasions that consumers'’
preferences are weakly separable over states, we will assume that for each consumer
there exist sets:

X., CRE,

representing the consumer’s feasible consumption possibilities if state s occurs (for
s=1,...,8), and a set G; (presumably a proper subset of G), such that:

S ~
X;' = {:1:.- € l-[az-l Xta | (Vg € G.): Tilg = zl2g = = zng} (125)
Thus, with this specification, one can make sense of the following example.

12.2 Example. Suppose that, for a given consumer, i, there exist S utility func-
tions:

u;,: RE = R,
such that:
2 niz o= [ Y maua(@n) > Y w.,u,,(z:,)]. (12.6)
s€S €S

where ‘r;,’ denotes #’s subjective (or objective) probability of the occurrence of state
s. Notice that, even though we have state-dependent utility here, preferences are
weakly separable on X;,, for each state, s. o

~ 2
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We will not need to assume much about the form of the firms' production sets,?
we will simply suppose that the k** firm's technological production possibilities are
given by a production set Yy C R".

We will make use of the following definition of feasible allocations for the econ-
omy.

12.3 Definition. We will say that an allocation, ((z}), (y})) € R("+9" is feasible
for £ iff:
z;€X;, fori=1,....m,

yreY, fork=1,... ¢

Zz,‘ = Ew,+2y;. (12.8)

EM teM kel

(12.7)

and:

Now, at this point, you may be saying, or thinking, “Hold on! That'’s exactly
the definition of a feasible allocation which was presented in Chapter 7!" And in
saying this you are absolutely right! All we have done here so far is to present a
somewhat more detailed and specialized specification of what the commodity space
is. However, notice that equation (12.8) of the above definition implies that:

Zz:,:zw.,+2y;, fors=1,...,S; (12.9)

iEM tEM kel

so that in each state, consumption equals net supply.

To continue our interpretation of the Arrow-Debreu Contingent Commodities
Model, the interpretation of the equilibrium which we are now going to discuss
is that at time ¢ = 0 there is a futures market for each contingent commodity.
Equilibrium will require that supply equals demand for each contingent commodity.

12.4 Definition. A system of prices, p* = (p},,...,p%;) € R™ and an allocation,
((=2), (y3)) will be said to be an Arrow-Debreu equilibrium iff:

1. ((2}), (y})) is a feasible allocation,

2. for every k € L, y; satisfies:

(Vyr €Yi): p*-yr 20" W,

and:
3. forevery 1 € M:

Pz 5p‘-w.+20.kp'-y,“. and :
kel
Vzie X)) &, 2! =>p" -2, >p" w; + Zo*p‘-y,‘c.
kel

(12.10)

Other than to keep in mind the fact that it is probably inappropriate to suppose that they can
be written as a cartesian product of state-specific production sets.



L—-—-——-—,

12.2. Arrow-Debreu Contingent Commodities 337

Once again, the definition is formally identical to that presented in Chapter 7;
the only difference is in the interpretation. The beauty of the situation, however,
is that we can immediately deduce some important results. In particular, we can
see that if ((x}), (y;), p*) is an Arrow-Debreu equilibrium then ((=?), (¥})) must be
Pareto efficient; at least in terms of the er ante consumer preferences, ;.

The following example may help you to get a better ‘feel’ for the model and the
meaning of the definition of competitive equilibrium being used here.

12.5 Example. Suppose £ is an exchange economy with m = 2 = S,and G =1;
that is we have two consumers, one physically distinguishable commodity, and two
states of the world to consider. We will also suppose that the it* consumer has
a twice-differentiable Bernoullian utility function, w: R; — Ry such that, for all
T € IR+:

ui(z) >0 and u/(z) <0;

so that u, is strictly increasing and strictly concave. If z; = (%i1,%iz) and ! =
(%41, %i3) are two commodity bundles in X; = R2, consumer  will prefer x; to ] if,
and only if:

Ui(=:) = mawi(za) + maui(zi2) > Us(!) = mau(z)y) + Toti(zly),

where ‘m;,’ denotes i’s (subjective) probability that state s will occur, for s = 1,2.
Supposing that these probabilities are strictly positive, and that prices for the two
goods at t = 0 are given by p = (p,p;) € Rﬁ,+, the i** consumer will maximize
utility by setting:

may(za) _ W.zu((m)’ (12.11)
n P2
and:
P T=p w, (12.12)
Assuming that the two consumers agree on the probabilities of the two states (s0
that m, = g, = m,, for s = 1,2, it is easily seen that in competitive (Arrow-Debreu)
equilibrium:
ui(zn) _ mp  uh(za)

G@E) - mp o ) e
and thus it is easy to see that the allocation will be Pareto efficient.
Now suppose that:
wn + w1 = w2 + wao; (12.14)

that is, that the total endowment in the two states is exactly the same. Suppose
further that ) = wy; that is, that the both consumers consider the two states to be
equally probable. Then (12.13) becomes:

u(zu) _ o _ uh(za)

=== 3 12.15
G@n) ;- dylem) LS

Suppose then, by way of obtaining a contradiction, that:
T > 2 (12.16)
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Then by the assumed properties of the u; functions:

uy{T11)

<1
uj(z12)

However, it then follows from (12.15) that ub(x21)/ub(x22) < 1 also; in which case
it follows from the assumed properties of the u; that:

I21 > T22
as well. But then it follows that:
11 + Z21 > ZT12 + 225

which, given (12.14), contradicts the assumption that ((z.,),p) is a competitive
(Arrow-Debreu) equilibrium. A symmetric argument shows that we cannot have
zq1 < x)2 for either i = 1 or i = 2. Therefore, we must have:

T =x2 fori=1,2;

and from (12.15) we see that this implies that we must have p; = po.

Maintaining the assumption that (12.14) holds, arguments similar to those of
the above paragraph establish that if both individuals believe the first state to be
more probable than the second, then we must have p; > p; in equilibrium.

Next suppose that we have:

wiz = wy =0,

but that (12.14) continues to hold (so that we have private risk, but we do not
have social risk). Then it follows from the reasoning above that both consumers
fully insure; that is, they each sell off rights to half of their endowments in order to
equalize expected consumption in the two states.

Finally, suppose that we have social risk; that is, suppose we have:

def def
wi E wn twn Fwr S wiz +w, (12.17)

but that 7; = m2. I will leave it as an exercise to show that in this situation we must
have:

(P —p2)(wr —w2) <0. (12.18)

The scenario involved in the usual interpretation of the model we have been
discussing is that all markets operate and are cleared in the initial period (¢t = 0),
while all consumption takes place at ¢t = 1. There are a couple of points which should
be made with respect to this interpretation. First of all, there is a question about
ez ante versus ez post efficiency. Suppose we have an Arrow-Debreu equilibrium,
({(=7), (wz), p*), but that markets are re-opened at t = 1, after the uncertainty is
resolved, but before consumption takes place. What would happen then? Strictly

3The markets in question here are called spot markets, while the markets at ¢ = 0 are called
forward markets
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speaking, we cannot say without assuming that preferences are weakly separable
on X;, and that all consumers’ er post preferences are the same as their er ante
preferences over X;,. However, both of these assumptions seem to be eminently
reasonable, and if both are true, then there would be no incentive for trades to
take place in this situation. Why is this? Well, each consumer must be maximizing
satisfaction, given the expenditure p} - z;, at «,; for if, for some consumer i there
were some x/, such that:

p: E z:s < p: - &;, and 3£, >is :!::3,

the consumer would have preferred to replace the bundle z}, with ;, at t = 0.*
Since the allocation in state s is therefore a competitive equilibrium, given the price
vector p;, it follows that it is also Pareto efficient. Consequently, there are no
mutually beneficial trades which consumers can make among themselves after the
resolution of uncertainty.

A serious objection to the interpretation of the model which we set out in the
preceding paragraph is that it is clearly unrealistic to expect the existence of forward
markets in each commodity. However, suppose we have an Arrow-Debreu equilib-
rium, ((z}), (y3),p*). If prices in each state are correctly anticipated by all agents,
and we have a futures market for only one commodity, with trading only in that one
commodity at ¢t = 0, then we can achieve that same consumption allocation, (x),
if re-trading is possible (at the anticipated prices) at ¢t = 1. This remarkable fact
was first noted by Arrow [1953]. The formal extension of this idea which we will
be studying in the next section was, however, developed by Professor Roy Radner
[1968, 1982].

12.3 Radner Equilibrium

For the sake of simplicity, in the remainder of this chapter we will confine our
discussion to the context of a pure exchange economy, and we will retain the notation
and basic assumptions regarding consumers which were introduced in the previous
section; so that consumer i has a preference relation -, on X;, and has the initial
endowment w;, as before. Once again we will deal with a two-period model; with
uncertainty being resolved in the second period (¢t = 1). This time, however, we will
allow no commodity trading in the first period (t = 0). We will, however, introduce
the idea of some tradeable assets, which can be purchased (or sold short) in the first
period. There are three pivotal assumptions which we will make in this context.
First, we will suppose that at ¢ = 0 consumers have expectations of the prices which
will occur (and at which trading will take place) at t = 1, for each possible state
of nature (each s € S). Secondly, we suppose that all consumers expect the same
vector of prices to prevail at t = 1 if state s € S occurs; we denote this vector by
‘p,,’ and we denote the full vector of such prices by ‘p;’ that is:

P= (ph"',pu-.'va)'

“Notice, however, that both weak scparability and the identity of ex post and ex ante preferences
are needed to make this argument correct.




