
The Envelope Theorem

In an optimization problem we often want to know how the value of the objective function will

change if one or more of the parameter values changes. Let’s consider a simple example: a price-

taking firm choosing the profit-maximizing amount to produce of a single product. If the market

price of its product changes, how much will the firm’s profit increase or decrease? At first, the

answer seems obvious: if the price change is ∆p > 0 — an increase — then profit will increase by

∆p on each unit the firm is producing, i.e., by (∆p)q if the firm is producing q units.

But on second thought, this doesn’t seem quite right. When the price increases, the firm will

probably change the amount q that it produces, so it seems as if we can’t just apply the price

change to the q units it was producing, but we apparently need to also take account of the change

in q as well. Let’s check this out.

The firm’s problem is

(P1) max
q∈R+

π(q; p) = pq − C(q),

where C(q) is the firm’s cost function, which we’ll assume is strictly convex and differentiable. For

the firm, this is a problem with just one decision variable, q, and one parameter, p. The first-order

condition for (P1) is

∂π

∂q
(q) = 0 i.e., C ′(q) = p

— the firm chooses the output level q at which its marginal cost is equal to the market price (which

the firm takes as given: we assumed it’s a price-taking firm).

Let’s write the solution function for (P1) as q̂(p); then the value function for (P1) is

v(p) = π
(
q̂(p), p

)
= pq̂(p)− C

(
q̂(p)

)
,

and we have

v′(p) =
∂π

∂p
+
∂π

∂q

∂q̂

∂p
= q +

∂π

∂q

∂q̂

∂p
,

which does take account of the firm’s output response to a price change,
∂q̂

∂p
. But this response

is multiplied by the term
∂π

∂q
, the change in profit that results from the change in q. And at the

optimal q, that’s zero: the first-order condition is
∂π

∂q
= 0. (To put it another way, since MC = p,

an increase in q will increase cost and revenue by approximately the same amount, leaving profit

virtually unchanged.) So it turns out that we do have v′(p) = q after all, just as we first conjectured.



We’ve just proved the Envelope Theorem — for an optimization problem with one decision variable,

one parameter, and no constraints:

The Envelope Theorem: For the maximization problem maxx∈R f(x; θ), if f : R2 → R is a

C1-function and if the solution function for the maximization problem is differentiable at θ, then

the derivative of the value function satisfies v′(θ) =
∂f

∂θ
at θ. �

Corollary: If the solution function is differentiable on an open subset U ⊆ R, then v′(θ) =
∂f

∂θ
on

U . �

Example 1: Let’s consider the following maximization problem:

max
x∈R

f(x, θ) = θ − (x− θ)2, θ ∈ R

= θ − x2 + 2θx− θ2

= 2θx− x2 + θ − θ2.

Before doing the mathematics, let’s place the maximization problem in an economic context. Sup-

pose θ is the amount of capital a firm is using, and x is the firm’s level of output. Assume that

f(x, θ) is the firm’s profit when it produces x units using θ units of capital. If the level of capital is

taken as given (a parameter) by the firm — for example, if the firm is making a short-run output

decision and it’s unable to vary its capital in the short run — then the solution function x̂(·) for this

problem tells us the profit-maximizing output level, x̂(θ), for the given amount of capital, θ; and

the value function, v(·), gives us the maximum profit that can be achieved, v(θ), with the amount

θ of capital. In other words, x̂(θ) and v(θ) are the short-run optimal output and the short-run

maximum profit.

How much can the firm increase its profit when, in the longer run, it can vary θ? The Envelope

Theorem will tell us the answer. First note that
∂f

∂θ
= 2x + 1 − 2θ. Therefore, according to the

Envelope Theorem, we have v′(θ) =
∂f

∂θ
= 2x+ 1− 2θ. This expression depends on x as well as on

θ; in order to determine v′(θ) from θ alone, we need to determine how x depends on θ — we need

to determine the solution function. The first-order condition for the maximization problem is

∂f

∂x
= 2θ − 2x = 2(θ − x)

= 0 at x = θ.

Therefore the solution function is x̂(θ) = θ, and therefore v′(θ) = 2θ + 1− 2θ = 1.

For this problem, of course, it’s simple to obtain the value function directly:

v(θ) = f
(
x̂(θ), θ

)
= f(θ, θ) = θ − (θ − θ)2 = θ.

Therefore, again, v′(θ) = 1. We’ll return to this example below.
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Here’s the Envelope Theorem for n variables and m paramters:

The Envelope Theorem: Assume that f : Rn × Rm → R is a C1-function, and consider the

maximization problem max
x∈Rn

f(x; θ). If the solution function x̂ : Rm → Rn is differentiable on an

open set U ⊆ Rm, then the partial derivatives of the value function satisfy

∂v

∂θi
=
∂f

∂θi
on U, i = 1, . . . ,m.

Proof: At any θ ∈ U , for each i = 1, . . . ,m we have

∂v

∂θi
=

∂

∂θi
f
(
x̂(θ), θ

)
=
∂f

∂θi
+

n∑
j=1

∂f

∂xj

∂x̂j
∂θi

=
∂f

∂θi
, because

∂f

∂xj
= 0 at x̂(θ), j = 1, . . . , n, according to the FOC. �

The Envelope Theorem for Constrained Optimization

Now let’s add a constraint to the maximization problem:

(P2) max
x∈Rn

f(x; θ) subject to G(x; θ) 5 0,

where f : Rn × R→ R and G : Rn × R→ R are C1-functions on an open set U ⊆ Rn × R, and we

assume that the solution function x̂(θ) exists and is differentiable for all (x, θ) ∈ U .

The first-order condition for (P2) is that for some λ = 0,

∇f(x; θ) = λ∇G(x; θ) i.e.,
∂f

∂xj
(x; θ) = λ

∂G

∂xj
(x; θ), j = 1, . . . , n.

Let’s assume that λ > 0; otherwise either the constraint is not binding or ∇f(x; θ) = 0, so we’d be

back in the unconstrained case.

Because the constraint is binding, the solution function x̂(·) satisfies G
(
x̂(θ), θ

)
= 0 for all θ such

that
(
(x̂(θ), θ

)
∈ U . We therefore have the following proposition, which will be instrumental in the

proof of the Envelope Theorem.
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Proposition: If G : Rn × R → R is a C1-function and x̂(·) : R → Rn satisfies G
(
x̂(θ), θ

)
= 0 for

all (x, θ) ∈ U , then
n∑
j=1

∂G

∂xj

∂x̂j
∂θ

= −∂G
∂θ

.

Proof: The 1st-degree Taylor polynomial equation for ∆G(∆x,∆θ) = 0 is

∂G

∂x1
∆x1 + · · ·+ ∂G

∂xn
∆xn +

∂G

∂θ
∆θ +R(∆x,∆θ) = 0,

where lim
(∆x,∆θ)→0

1

‖(∆x,∆θ)‖
R(∆x,∆θ) = 0. Therefore

lim
∆θ→0

[ n∑
j=1

∂G

∂xj

∆xj
∆θ

+
∂G

∂θ

]
= 0

i.e.,
n∑
j=1

∂G

∂xj
lim

∆θ→0

∆xj
∆θ

= −∂G
∂θ

i.e.,
n∑
j=1

∂G

∂xj

∂x̂j
∂θ

= −∂G
∂θ

. �

Now the proof of the Envelope Theorem, for a one-constraint maximization problem, is straightfor-

ward:

The Envelope Theorem: Assume that f : Rn×Rm → R and G : Rn×Rm → R are C1-functions,

and consider the maximization problem

(P2) max
x∈Rn

f(x; θ) subject to G(x, θ) 5 0.

Assume that the solution function x̂(·) : Rm → Rn is differentiable at θ ∈ Rm and that λ is the

value of the Lagrange multiplier in the first-order condition for (P2) at
(
x̂(θ), θ

)
. Then the partial

derivatives of the value function satisfy

∂v

∂θi
=
∂f

∂θi
− λ∂G

∂θi
at θ, i = 1, . . . ,m,

where the partial derivatives of f and G are evaluated at
(
x̂(θ), θ

)
.

Proof: For each i = 1, . . . ,m, and evaluating all partial derivatives of f and G at
(
x̂(θ), θ

)
, we

have

∂v

∂θi
(θ) =

∂f

∂θi
+

n∑
j=1

∂f

∂xj

∂x̂j
∂θ

(θ)

=
∂f

∂θi
+

n∑
j=1

λ
∂G

∂xj

∂x̂j
∂θ

(θ) from the FOC for (P2)

=
∂f

∂θi
− λ∂G

∂θi
, by the proposition above. �
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Now it’s an easy exercise to extend the proof to maximization problems with multiple constraints.

So we have the general version of the Envelope Theorem:

The Envelope Theorem: Assume that f : Rn×Rm → R and G : Rn×Rm → R` are C1-functions,

and consider the maximization problem

(P) max
x∈Rn

f(x; θ) subject to G(x, θ) 5 0,

i.e.,

(P) max
x∈Rn

f(x; θ) subject to G1(x, θ) 5 0, . . . , G`(x, θ) 5 0.

Assume that the solution function x̂(·) : Rm → Rn is differentiable at θ ∈ Rm and that for each

k = 1, . . . , `, λk is the value of the Lagrange multiplier for constraint Gk(x, θ) 5 0 in the first-order

condition for (P) at
(
x̂(θ), θ

)
. Then the partial derivatives of the value function satisfy

∂v

∂θi
=
∂f

∂θi
−
∑̀
k=1

λk
∂Gk
∂θi

at θ, i = 1, . . . ,m,

where the partial derivatives of f and G are evaluated at
(
x̂(θ), θ

)
. �

Example 1, continued:

Let’s take a look at Figure 1, where we have the graphs of the functions f(·, θ) in Example 1 for

several values of θ, and also the graph of the value function v(θ). Note that the graph of v(θ) is not

the envelope of the various graphs of the functions f(·, θ). In fact, it can’t be: the v(θ) graph is the

locus of the “peaks” of all the f(·, θ) graphs. So it’s only when v(θ) is a constant function that it

will be the envelope of the f(·, θ) graphs, a pretty uninteresting case.

Figure 2 depicts the graph that is the envelope of the graphs of f(x, θ) for various values of θ. It’s

the graph of a function we’ll denote by ṽ; the function is ṽ(x) = x+ 1
4 .

Now let’s change the question we ask about this firm. Let’s ask, for any output level x, what’s

the optimal amount of capital with which to produce x units? That is, what amount of capital, θ,

will enable the firm to generate the most profit by producing the output amount x? This is a new

maximization problem,

(P̃) max
θ∈R

f(x, θ) = 2θx− x2 + θ − θ2 for a given value of x.

Exercise: Show that the solution function for the problem (P̃) is θ̃(x) = x + 1
2 and the value

function is ṽ(x) = x+ 1
4 .
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Now look at Figure 2 again. At x = 1
2 , for example, the maximum possible profit is indeed

ṽ(x) = x + 1
4 = 3

4 . And the maximum profit when x = 1
2 is achieved on the graph of the function

f(x, 1) — i.e., the capital required in order to achieve maximum profit by producing x = 1
2 is

θ = 1 = x + 1
2 = θ̃(x) for x = 1

2 . Moreover, the point (x, ṽ(x)) is a point of tangency between the

graph of f(x, 1) and the graph of v(θ) — not ṽ(x). The same thing is true at other values of x: the

maximum profit attainable by producing x units is with capital amount x+ 1
2 and this occurs at a

tangency between the graph of f(x, θ) for θ = θ̃(x) and the graph of v(θ).

So what we find is that, while the graph of v(θ), the value function for the problem (P), is not

the envelope of the graphs of the functions being maximized for the various values of θ, it is the

envelope of the graphs of the functions being maximized in the problem (P̃). However, this is a

different maximization problem — it’s the reverse problem, so to speak, in which we’ve switched

the decision variable and the parameter. So it’s really easy to be misled by the term “Envelope

Theorem.” The theorem is about the value function of a maximization (or minimization) problem

where the solution function is, say, x̂(θ) for a parameter θ, but the value function v(θ) for this

problem is actually the envelope of the functions f(x, θ) in the reverse problem, where the solution

function is θ̂(x).

The Lagrange Multiplier as Shadow Value

Suppose the parameter in our maximization problem is the right-hand side of a constraint:

max
x∈Rn

f(x) subject to g(x) 5 b.

Rewrite the problem as

max f(x) subject to G(x; b) 5 0, where G(x; b) = g(x)− b.

The Envelope Theorem tells us that the derivative of the value function is

v′(b) =
∂f

∂b
− λ∂G

∂b
= 0− (λ)(−1) = λ.

Therefore the value of the Lagrange multiplier at a solution of the constrained maximization problem

is the amount by which the objective value will be increased as a result of increasing the RHS of

the constraint by one unit (i.e., “relaxing” the constraint by a unit). And, of course, it’s also the

amount by which the objective value will be decreased if we decrease the RHS by a unit. So λ is

the marginal value, or “shadow value”, of a change in the RHS of the constraint. (It’s important

to note that the value of λ depends on b.)
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Example 2: Hotelling’s Lemma for a Profit-Maximizing Firm

A firm produces a single product and is a price-taker in both its product and input markets. If the

firm uses only two inputs, then its profit-maximization problem is

max
q,x1,x2

π(q, x1, x2; p, w1, w2) = pq − w1x1 − w2x2 subject to q 5 f(x1, x2),

where q is the amount of the product produced via the strictly concave production function f(x1, x2)

and x1 and x2 are the amounts of the two inputs used. The market prices are p per unit for the

product and w1 and w2 for the inputs. Let θ = (p, w1, w2) and let’s rewrite the constraint as

G(q, x1, x2) 5 0, where G(q, x1, x2) = q − f(x1, x2).

The value function v(θ) for the firm’s maximization problem tells us the firm’s profit as a function

of the parameters (the prices) p, w1, and w2. The Envelope Theorem tells us immediately that

∂v

∂p
=

∂π

∂p
− λ∂G

∂p
=

∂π

∂p
= q = q̂(p, w1, w2)

∂v

∂w1
=

∂π

∂w1
− λ ∂G

∂w1
=

∂π

∂w1
= −x1 = − x̂1(p, w1, w2)

∂v

∂w2
=

∂π

∂w2
− λ ∂G

∂w2
=

∂π

∂w2
= −x2 = − x̂2(p, w1, w2).

If there are n inputs, we have
∂v

∂wi
= −xi = − x̂i(p, w1, w2) for each i = 1, . . . , n.

This result is Hotelling’s Lemma. Note that if we can observe the amounts q, x1, . . . , xn, then

we don’t need to obtain the solution function, or even obtain the first-order conditions, to use this

result. However, if we don’t know these amounts, then we would have to obtain the solution function

that gives us q̂(p,w) and/or x̂i(p,w), depending on which derivatives of v(·) we’re trying to obtain.

Example 3: Shephard’s Lemma for a (Conditional) Cost-Minimizing Firm

A firm produces a single product and is a price-taker in its input markets. At whatever level of

output it produces, we assume that it minimizes the cost of doing so. The optimization problem is

min
x1,x2

E(x1, x2;w1, w2) = w1x1 + w2x2 subject to f(x1, x2) = q,

where x1 and x2 are the amounts of the two inputs used, and q is the amount of the product to be

produced via the production function f(x1, x2). The market prices of the inputs are w1 and w2 per

unit. The firm need not be a profit maximizer.

The Solution Function: x̂(w1, w2, q) — i.e., x̂1(w1, w2, q) and x̂2(w1, w2, q) — the firm’s con-

ditional factor demand function(s), which we obtain from the first-order conditions for the

minimization problem.
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The Value Function: v(w1, w2, q), the minimum cost of producing q units at input prices w1 and

w2. We generally write the value function for this problem as C(w1, w2, q) instead of v(w1, w2, q).

It’s the firm’s cost function. If we assume w1 and w2 are fixed, then we would write the cost

function as simply C(q). Of course, C(w1, w2, q) = w1x̂1(w1, w2, q) + w2x̂2(w1, w2, q).

Note that while w1, w2, and q are all parameters in this problem, they’re qualitatively different

in the problem’s interpretation. The parameters w1 and w2 are exogenous to the firm — the firm

can’t affect them by its actions. The parameter q is also exogenous in the minimization problem

(that’s what we mean by a parameter), but it’s actually endogenous to the firm: the firm can choose

the level q of its output — perhaps to maximize profit, or perhaps to maximize market share, or

perhaps according to some other criterion. But we assume that it minimizes the cost of producing

that q. It’s for this reason that we say the factor demand functions x̂i(q, w1, w2) are conditional

factor demands (and the firm is conditionally minimizing its cost). The firm’s overall objective isn’t

to minimize its cost (it could do that by producing q = 0); but conditional on producing q, it wants

to minimize its cost.

Shephard’s Lemma:
∂C

∂wi
= xi = x̂i(w, q).

This is an immediate implication of the Envelope Theorem. And if we can observe the usage xi

of input i, Shephard’s Lemma gives us the value of
∂C

∂wi
without obtaining the first-order conditions

or knowing the conditional factor demand functions.

Marginal Cost: The firm’s marginal cost is the derivative of its cost function, i.e., the derivative of

the value function with respect to q; and q is the right-hand side of the constraint in the minimization

problem. So the marginal cost is the value of the Lagrange multiplier λ, which of course depends

on (q, w1, w2) : MC(q, w1, w2) = λ(q, w1, w2).

While this example has only two inputs, everything we’ve done goes through in the same way for

any number of inputs.
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Example 4: Roy’s Identity

In demand theory, the consumer’s demand function can be expressed as a ratio of derivatives of the

indirect utility function, a result known as Roy’s Identity.

Theorem (Roy’s Identity): Let u : R`++ → R be a differentiable and strictly quasiconcave utility

function. Then the demand function x̂(·) and the indirect utility function v(·) satisfy the equations

x̂k(p, w) = −

∂v

∂pk
(p, w)

∂v

∂w
(p, w)

, k = 1, . . . , `.

Proof: For each k = 1, . . . , ` the Envelope Theorem yields

∂v

∂pk
=

∂u

∂pk
− λ∂p · x

∂pk
= − λxk

at each (p, w) ∈ R`+1
++ , where λ(p, w) is the Lagrange multiplier in the utility-maximization prob-

lem’s first-order condtion. The result then follows from the fact that λ(p, w) =
∂v

∂w
(p, w). �
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Figure 1

Figure 2

10


