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52 Fixed point theory

10.9  Remark: Approximating Maximal Elgments .

The set of maximal elements of a binary relation U on K is '
N (K \ U™Y(z)). If U has open graph, then we may approximate this
zeK

intersection by a finite intersection. This is proven in Theorem 10.1 L.

10.10 Definition ' }
A set D is 8-dense in K if every open set of diameter & meets D It
follows that if K is compact, then for every 8 > 0, K has a finite §-

dense subset.

10.11 Theorem _ .
Let K be compact and let U be a binary relation on K with open
graph. Let M be the set of maximal elempnts of U. For every & > 0,
there is a 8 > 0 such that if D is 8-dense in K, then

ﬂDK\ U~Y(z) € N{M).

ZE.

10.12 Proof '

Let x € K\ M. Then there is a y, € U(x), and since U t{as open
graph, there is a 8, such that N5 (x) X Ns(yx) C _Gr U. S{nce

C = K\ N{M) is compact, it is covered by a finite collection
{Ns,.(x,-)}. Puté = miin ;.

Let x ¢ Ny(M). Then x € C and so x € N;(x;) for some i. Since
D is 8-dense, let z € D N Ng(y;). Since Ns(x;) X Ns(v;) € Gr U,
we have that x € U™ !(z)andso x ¢ K\ U"\(2).

Thus ZQDK\ U~!(z) C NM).

CHAPTER 11

Continuity of correspondences

11.0  Remark

A correspondence is a function whose values are sets of points.
Notions of continuity for correspondences can traced back to Kura-
towski [1932] and Bouligand [1932]. Berge [1959, Ch. 6] and Hil-
denbrand [1974, Ch. B have collected most of the relevant theorems
on continuity of correspondences. It is difficult to attribute most of
these theorems, but virtually all of the results of this chapter can be
found in Berge [1959]. Whenever possible, citations are provided for
theorems not found there. Due to slight differences in terminology,
the proofs presented here are generally not identical to those of Berge.
A particular difference in terminology is that Berge requires compact-
valuedness as part of the definition of upper semi-continuity. Since
these properties seem to be quite distinct, that requirement is not
made here. In applications, it frequently makes no difference, as the
correspondences under consideration have compact values anyway.
Moore [1968] has catalogued a number of differences between
different possible definitions of semi-continuity. The term hemi-
continuity has now replaced semi-continuity in referring to correspon-

“dences. It helps to avoid confusion with semi-continuity of real-

valued functions.

The chief use of correspondences in economic and game theoretic
problems is the linking up of multi-player situations and single-player
situations. For example, the problem of finding a maximal element of
a binary relation as discussed in Chapter 7 is a single-player problem.
The solution to the problem does not depend on the actions of others.
As another example, the problem of finding an equilibrium price vec-
tor can be reduced to a single-player maximization problem as is
shown in Chapter 8. The problem of finding a noncooperative equi-
librium of a multi-player game is on the face of it of a different sort.
It amounts to solving several interdependent individual maximization
problems simultaneously. Given a choice of variables for all but one
of the maximization problems we can find the set of solutions for the
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remaining problem. This solution will in general depend on the
choices of the other players and so defines a correspondence mapping
the set of joint choice variables into itself. A noncooperative equilib.
rium will be a fixed point of this correspondence. Theorems on the
existence of fixed points for correspondences are presented in Chapter
15. There are of course other uses for correspondences, even in
single-player problems such as the equilibrium price problem, as is
shown in Chapter 18. On the other hand, it is also possible to reduce
multi-player situations to situations involving a single fictitious player,
asin 19.7.

The general method of proof for results about correspondences is to
reduce the problem to one involving (single-valued) functions, The
single-valued function will either approximate the correspondence or
be a selection from it. The theorems of Chapters 13 and 14 are all in
this vein. In a sense these techniques eliminate the need for any othe
theorems about correspondences, since they can be proved by using
only theorems about functions. Thus it is always possible to substi-
tute the use of Brouwer’s fixed point theorem for the use of
Kakutani’s fixed point theorem, for example. While Brouwer’s
theorem is marginally easier to prove, it is frequently the case that it is
more intuitive to define a correspondence than to construct an
approximating function.

11.1  Definition

Let 2Y denote the power set of 7, i.e., the collection of all subsets of
Y. A correspondence (or multivalent Junction) y from X to Y is a
function from X to the family of subsets of ¥. We denote this by
Y:X —— Y. (Binary relations as defined in 7.1 can be viewed as
correspondences from a set into itself.) For a correspondence

Y: E —— F, let Gr y denote the graph of v, i.e.,

Gry={(x,y) €Ex F:y € yx)).
Likewise, for a function f : E — F
Grf={xy) € ExF:y=fx)

11.2  Definition
Lety: X >—Y,EC Yand F C X. The image of F under v is
defined by

V) = Un()

The upper (or strong) inverse of E under Y, denoted y*[E], is defined
by

Y*IEl={x € X : y(x).Cc E}.
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lower (or weak) inverse of E under v, denoted y~[E], is defined

Yy IEl={x €e X :y(x) N E # ).
ory € Y, set
Y'o)={€eX:yeyx)

ote that y~'(v) = y"l{y}]. (If U is a binary relation on X, i.e.,

: X —— X, then this definition is consistent with the definition of
U'»in71)

113  Definition ' .

A correspondence y : X —— Y is called upper hemz-contmugus ( ui_tc)
at x if whenever x is in the upper inverse of an open set sois a neigh-
borhood of x; and v is lower hemi-continuous (Ihc) at x if whenever x
is in the lower inverse of an open set so is a neighborhood of x. The
correspondence y : X —— Y is upper hemi-continuous (resp. lower
hemi-continuous) if it is upper hemi-continuous (resp. lower hemi-
continuous) at every x € X. Thus v is upper hemi-continuous (resp.
lower hemi-continuous) if the upper (resp. lower) inverses of open sets
are open. A correspondence is called continuous if it is both upper
and lower hemi-continuous.

114  Note .
Ify: X —— Y is singleton-valued it can be considered as a function
from X to Y and we may sometimes identify the two. In this case the
upper and lower inverses of a set coincide and agree with the inverse
regarded as a function. Either form of hemi-continuity is equivalent
to continuity as a function. The term “semi-continuity” has been
used to mean hemi-continuity, but this usage can lead to confusion
when discussing real-valued singleton correspondences. A semi-
continuous real-valued function (2.27) is not a hemi-continuous
correspondence unless it is also continuous.

11.5  Definition

The correspondence y : E —— F is said to be closed at x if whenever
x" = x, y" € y(x")and y" — y, then y € y(x). A correspondence is
said to be closed if it is closed at every point of its domain, i.e., if its
graph is closed. The correspondence v is said to be open or have open
graph if Gr yisopenin E x F.

11.6  Definition

A correspondence y : E—= F is said to have open (resp. closed) sec-
tions if for each x € E, y(x) is open (resp. closed) in F, and for each
y € F,y7[{y}]is open (resp. closed) in E.
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11.7 Note

There has been some blurring in the literature of the distinction
between closed correspondences and upper hemi-continuous
correspondences. The relationship between the two notions is set :
forth in 11.8 and 11.9 below. For closed-valued correspondenceg intg
a compact space the two definitions coincide and the distinction may
seem pedantic. Nevertheless the distinction is important in some Cire
cumstances. (See, for example, 11.23 below or Moore [1968].)

11.8  Examples: Closedness vs. Upper Hemi-continuity
In general, a correspondence may be closed without being upper
hemi-continuous, and vice versa.

Define ¥y : R —— R via

{1/x} forx#0

Y(x) =
{0} for x = 0
Then v is closed but not upper hemi-continuous.
Define p : R =— Rvia p(x) =(0,1). Then u is upper hemi-
continuous but not closed.

11.9  Proposition: Closedness, Openness and Hemi-continuity
LetECR", FCRfandlety: E —»— F.
(@) Ify is upper hemi-continuous and closed-valued, then y is
closed.
(b) If F is compact and ¥ is closed, then y is upper hemi-
continuous.
(c) Ify is open, then y is lower hemi-continuous.
(d) Ify is singleton-valued at x and upper hemi-continuous at x,
then vy is continuous at x.
(e) Ifvy has open lower sections, then 7y is lower hemi-continuous.

11.10 Proof

(@) Suppose (x,y) ¢ Gr y. Then since v is closed-valued, there is
a closed neighborhood U of y disjoint from y(x). Then
V' = U° is an open neighborhood of y(x). Since ¥y is upper
hemi-continuous, y*[V] contains an open neighborhood W of
x,i.e,y(z) C Vforallz € W, Thus(W xU) N Gry=2
and (x,y) € W x U. Hence the complement of Gr vy is open,
so Gr v is closed.

(b) Suppose not. Then there is some x and an open neighbor-
hood U of y(x) such that for every neighborhood V of x,
there is a z € V with y(z) ¢/ U. Thus we can find z* — x,
y" € y(z") with y" ¢ U. Since F is compact, {y"} has a
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F‘ . convergent subsequence converging to y ¢ U. But since y is
R closed, (x,y) € Gr y,s0 y € y(x) C U, a contradiction.
E© Exercise.

!5,, (@ Exercise.

) Exercise.

:&u‘n Proposition: Sequential Characterizations of Hemi-continuity
ItECR"FC R, y: E —=—F.

b, @ Iy is compact-valued, then 7 is upper hemi-continuous at x
[ if and only if for every sequence x” — x and y" € y(x") there
is a convergent subsequence of {y”} with limit in y(x).

(b) Then v is lower hemi-continuous if and only if x” — x and
B € v(x) imply that there is a sequence y" € y(x") with
g yn — .

1112 Proof

“' (a) Suppose Y is upper hemi-continuous at x, x” — x and

y" € y(x™). Since y is compact-valued, v(x) has a bounded
neighborhood U. Since v is upper hemi-continuous, there isa
neighborhood ¥ of x such that y(¥) € U. Thus {y"} is even-
tually in U, thus bounded, and so has a convergent subse-
quence. Since compact sets are closed, this limit belongs to
()

Now suppose that for every sequence x" — x, y" € y(x"),

: there is a subsequence of {y”} with limit in y(x). Suppose v is

not upper hemi-continuous; then there is a neighborhood U

w of x and a sequence z" — x with y"” € y(z") and y" ¢ U.

Such a sequence {y"} can have no subsequence with limit in
v(x), a contradiction.
(b) Exercise.

“11.13 Definition

A convex set F is a polytope if it is the convex hull of a finite set. In
particular, a simplex is a polytope.

' 114 Proposition: Open Sections vs. Open Graph (cf. Shafer

LA

"LetE C R™ and F C R and let F be a polytope. Ify: E —— Fis

[1974], Bergstrom, Parks, and Rader [1976])

_ convex-valued and has open sections, then y has open graph.

- 1115 Proof

Let y € y(x). Since y has open sections and F is a polytope, there is

- a polytope neighborhood U of y contained in y(x). Let

U=co {y!,..,y"}. Since y has open sections, for each i there is a
“neighborhood of x, V;, such that y* € y(z) forall z € V;. Put
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n
V= ‘ani and W=V x U and let (x',)')) € W. Then
l-

yiey),i=1,.,nandy € U=co {y!,.,p" C co Y(X'), since y i &
convex-valued. Thus W is a neighborhood of (x,y) completely cop.
tained in Gr 7.

11.16 Proposition: Upper Hemi-continuous Image of a Compact Set
Let y : E —— F be upper hemi-continuous and compact-valued and 4
let K C E be compact. Then y(K) is compact.

11.17 Proof (Berge [1959])
Let {U,} be an open covering of y(K). Since y(x) is compact, there is M
a finite subcover Uy,...,Uyn, of ¥(x). Put V, = U} U, ..., U U i
Then since v is upper hemi-continuous, y*[V,] is open and containg
x. Hence K is covered by a finite number of y* [V, I’s and the
corresponding Uy’s are a finite cover of y(K).

11.18 Exercise: Miscellaneous Facts about Hemi-continuous
Correspondences
Let E C R™,

(a) Lety:E —— R™ be upper hemi-continuous with closed
values. Then the set of fixed points of Y, i.e.,
{x € E : x € y(x)}, is a closed (possibly empty) subset of E.

(b) Lety,u: E —— R™ be upper hemi-continuous with closed 4
values. Then {x € E : u(x) N y(x) = 2} is a closed (possibly
empty) subset of E.

(c) Lety:E —— R™ be lower hemi-continuous. Then
{x € E : y(x) = @) is an open subset of E.

(d) Lety:E —— R™ be upper hemi-continuous. Then _
{x € E : y(x) = @) is a closed subset of E. e

() LetX C R™ be closed, convex, and bounded below and let '
B : RI*!—— X be defined by i
BoM)=1{x €X:p -x < M),where M € R, andp € R?". |
In other words, B is a budget correspondence for the con-
sumption set X. Show that B is upper hemi-continuous; and
if there is some x € X satisfying p - x < M, then B is lower
hemi-continuous at (p,M).

11.19 Proposition: Closure of a Correspondence
Let EC R”and F C RF

(@) Lety:E —— F be upper hemi-continuous at x. Then
Y : E == F, defined by ]

?(x) = closure (in F) of y(x)

is upper hemi-continuous at x.
(b) The converse of (a) is not true.
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(c) The correspondence v : E —— F is lower hemi-continuous at
x if and only if y : E —— F is lower hemi-continuous at x.

11.20 Proof
Exercise. Hints: . o
(a) Use the fact that if E and F are disjoint closed sets in R™,
then they have disjoint open neighborhoods.
() Consider y: R ——R via y(x) = {x]}°.
(c) Use the Cantor diagonal process and 11.11.

{1.21 Proposition: Intersections of Correspondences
et ECR"FC R* and y,u : E —— F, and define
g Nw:E—=—Fby(y N px) =1 N p(x). Suppose
y) N ) # 2.
(a) Ify and p are upper hemi-continuous at x and closed-valued,
then (y N p) is upper hemi-continuous at x. (Hildenbrand
[1974, Prop. 2a., p. 231.)
(b) If p is closed at x and vy is upper hemi-continuous at x and
v(x) is compact then (y N p) is upper hemi-continuous at x.
(Berge [1959, Th. 7, p. 1171
(c) Ify is lower hemi-continuous at x and if p has open graph,
then (y N p) is lower hemi-continuous at x. (Prabhakar and
Yannelis [1983, Lemma 3.2}.)

11.22 Proof
Let U be an open neighborhood of y(x) N p(x). Put
C=vx) N U
(a) Note that C is closed and p(x) N C = @. Thus there are dis-
joint open sets ¥, and ¥, with wx) € ¥V, C € V, Since p
is upper hemi-continuous at x, there is a neighborhood W, of
x with (W) € ¥V, € V5. Now y(x) C U U V,, which is
open and so x has a neighborhood W, with
Y(W,) € U U V,, as y is upper hemi-continuous at x. Put
W=W, N W, Thenforz € W,
v(z) N pz) € V5 N (U U V) < U. Thus (y N p)is
upper hemi-continuous at x.
(b) Note that in this case C is compact and p(x) NC=a.
Since p is closed at x, if y ¢ p(x) then we cannot have
y" — y, where y" € p(x") and x" — x. Thus there is a
neighborhood U, of y and W, of x with w(W,) C Uy. Since
C is compact, we can write C C V,=Up U - - Uy
so setting W, = W,y N -+ - N W, we have w(Wy) C Vs.
The rest of the proof is as in (a).
(c) Let U be open and let y € (y N p)(x) N U. Since p has
open graph, there is a neighborhood W x V of (x,y)
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contained in Gr u. Since ¥y is lower hemi-continuous,
Y'IU N V] N W is a neighborhood of x, and if
Zz€YyIWUNVIN W, theny € (y N p)z) N U. Thus
(v N p) is lower hemi-continuous.

11.23  Proposition: Composition of Correspondences
Letp:E——F,y:F =-—Q. Definey °pn: E =— G via
Y TR(x) = U y(y).
yeu(x) . . -
(a) Ifyand p are upper hemi-continuous, so is y ° K.
(b) Ifyand p are lower hemi-continuous, so is y ° .
(c) Ifyand p areclosed, y ° u may fail to be closed.

11.24 Proof
Exercise. Hint for (c) (Moore [1968]): Let

E—{aER:—%Sas %},F{(xl,xz)ERZ:xl 2 0} and
G =R. Set pw(a) = {(x1,x2) € F : Ix,l < Ix, tan al; ax; > 0}, ie,

p(a) is the set of points in F lying between the x;-axis and a ray mak-
ing angle a with the axis. Set y((x,,x,)) = {x,}.

11.25 Proposition: Products of Correspondences
Lety; : E —— Fi,i=1,..k.

(a) If each y; is upper hemi-continuous at x and compact-valued,
then

IIvi:z b= I1vi(z)
is upper hemi-continuous at x and compact-valued.

(b) If each y; is lower hemi-continuous at x, then II y; is lower
!

hemi-continuous at x.
(c) Ifeach y; is closed at x, then ITv; is closed at x.
!

(d) If each y; has open graph, then IT y; has open graph.
1

11.26 Proof

Exercise. Assertion (a) follows from 11.1 1(a), (b) from 11.11(b) and
(c) and (d) from the definitions.

11.27 Proposition: Sums of Correspondences
Lety,: E —=—F;, i=1,.k.

(@) Ifeach v; is upper hemi-continuous at x and compact-valued,
then

2z ==Y y(2)

is upper hemi-continuous at x and compact-valued.

11.2!
Let"
(i

11.:
The

con
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(b) If each 7; is lower hemi-continuous at x, then ), y; is lower
i

hemi-continuous at x.
) If each y; has open graph, then Y y; has open graph.
i

128  Proof
Fxercise. Assertion (a) follows from 2.43 and 11.11(a), (b) from

(1.11(b), and (c) from the definitions.

1129 Proposition: Convex Hull of a Correspondence
lety: E —— F, where F is convex.
@ Ify is compact-valued and upper hemi-continuous at x, then

coY:z H—coy(z)

is upper hemi-continuous at x.

(b) If'yis lower hemi-continuous at x, co y is lower hemi-
continuous at x.

(c) If y has open graph, then co y has open graph.

(d) Even if y is a compact-valued closed correspondence, co y
may still fail to be closed.

11.30 Proof

The proof is left as an exercise. For parts (a) and (b) use
Caratheodory’s theorem (2.3) and 11.9(c) and 11.11. For part (d)
consider the correspondence v : R —=— R via

{0,1/x} x#0

Y(x) =
{0} x=0.

11.31 Proposition: Open Sections vs. Open Graph Revisited

Let E € R” and F C R* and let F be a polytope. Ify: E =— F

has open sections, then co y has open graph.

11.32 Proof

By 11.14, we need only show that co vy has open sections. Since y(x)
is open for each x, so is co y(x). (Exercise 2.5c.) Next let

x € (co y)"[{y}], i.e., y € co y(x). We wish to find a neighborhood U
of x such tBat w € U implies y € co y(w). Since y € co y(x), we can
write y = Y A;z;, where each z; € y(x) and the A;’s are nonnegative

i=1
and sum to unity. Since y has open sections, for each i there is a
n

neighborhood U; of x in y~[{z;}]. Setting U = ,ﬂl U;, we have that
=

w € U implies z; € y(w) for all i, so that y € co {z},....z,} C co y(w).
Thus co y has open sections.
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11.33 Note

It follows from 11.29(d) that the anal
correspondences with closed sections

ogue of Proposition 1
is false.
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CHAPTER 12

The maximum theorem

0 Remarks

ne of the most useful and powerful theorems employed in
athematical economics and game theory is the "maximum theorem."
states that the set of solutions to a maximization problem varies
upper hemi-continuously as the constraint set of the problem varies in
a continuous way. Theorem 12.1 is due to Berge [1959] and consid-
ers the case of maximizing a continuous real-valued function over a
compact set which varies continuously with some parameter vector.
The set of solutions is an upper hemi-continuous correspondence with
~ compact values. Furthermore, the value of the maximized function
varies continuously with the parameters. Theorem 12.3 is due to
Walker [1979] and extends Berge’s theorem to the case of maximal
elements of an open binary relation. Theorem 12.3 allows the binary
relation as well as the constraint set to vary with the parameters.
Similar results may be found in Sonnenschein [1971] and Debreu
[1969]. Theorem 12.5 weakens the requirement of open graph to the
requirement that the nonmaximal set be open, at the expense of
requiring the constraint set to fixed and independent of the parame-
ters. The remaining theorems are applications of the principles to
problems encountered in later chapters.

In the statement of the theorems, the set G should be interpreted as
the set of parameters, and Y or X as the set of alternatives. For
instance, in 11.8(e) it is shown that the budget correspondence,
B:(m)i—=—{x € RT:p-x < m,x = 0} is continuous for
m > 0 and compact-valued for p > 0. The set of parameters is then
G = R”, x Ry, the set of price-income pairs. If a consumer has a
preference relation satisfying the hypotheses of 7.5, then Theorem
12.3 says that his demand correspondence is upper hemi-continuous.
Likewise, supply correspondences are upper hemi-continuous, so that
excess demand correspondences are upper hemi-continuous, provided
consumers have strictly positive income.




12.1  Theorem (Berge [1959])

Let G C R™, Y C Rfand lety: G —— Y be a compact-valued
correspondence. Let f : ¥ — R be continuous. Definepu: G —=— y
by u(x) = {y € y(x) : y maximizes f on y(x)}, and F : G — R by

F(x) = f(y) for y € p(x). If y is continuous at x, then y is closed ang

upper hemi-continuous at x and F is continuous at x. Furthermore,
u is compact-valued.

12.2  Proof :
First note that since v is compact-valued, p is nonempty and
compact-valued. It suffices to show that p is closed at x, for then

p=7v N pand 11.21(b) implies that y is upper hemi-continuous at X.

Let x" — x, y" € u(x"), y" — y. We wish to show y € p(x) and
F(x™) = F(x). Since v is upper hemi-continuous and compact-
valued, 11.9(a) implies that indeed y € y(x). Suppose y ¢ p(x).
Then there is z € y(x) with f(z) > f(»). Since 7 is lower hemi-
continuous at x, by 11.11 there is a sequence z” — z, z" € y(x").
Since z” — z, y* — y and f(z) > f(), the continuity of f implies
that eventually f(z") > f(y"), contradicting y” € u(x"). Now
F(x™) = f(y™) — f(y) = F(x), so F is continuous at x.

12.3  Theorem (Walker [1979], cf. Sonnenschein [1971])

Let G C R™, Y C R¥, and let y : G —— Y be upper hemi-
continuous with compact values. Let U : Y X G —— Y have an
open graph. Define p : G —— Y by

ux) ={y € y(x): U(y,x) N y(x) = @}. Ifyis closed and lower
hemi-continuous at x, then p is closed at x. If in addition, vy is upper
hemi-continuous at x, then u is upper hemi-continuous at x.

Further, u has compact (but possibly empty) values.

124  Proof
Since U has open graph, p(x) is closed (its complement being clearly
open) in y(x), which is compact. Thus p has compact values.

Let x* — x, y" € w(x"), y" — y. We wish to show that y € p(x).
Since 7 is closed and y” € w(x") C y(x"), ¥ € y(x). Suppose
Y # u(x). Then there exists z € y(x) with z € U(y,x). Since v is
lower hemi-continuous at x, by 11.11 there is a sequence
z" —z,z" € y(x™). Since U has open graph, z"” € U(y",x") eventu-
ally, which contradicts y" € w(x™). Thus p is closed at x.

If v is upper hemi-continuous as well since p = p N y, and p is
closed at x, 11.21(b) implies that y is upper hemi-continuous at x.

maximum theorem 0D

Proposition . : _
G CR™ Y CRFandlet U:G x Y —— Y satisfy the following

on.
. If z € U(y,x), then there is z' € U(y,x) such that

e int UTI{Z'}L _
Define p(x) = {y € Y : U(y.x) = @}. Then u is closed.

6 Proof B
t x" — x, y" € p(x™), y* —y. Suppqse y ¢ y,(x). Th:an there
ust be z € U(y,x) and so by hypothesis there is some z s1'11chnthat
x) € int U”[{z'}]. But then for n large enough, z' € U(y",x"),
hich contradicts y* € p(x").

7 Theorem (cf. Theorem 22.2, Walker [1979]r? Green [1984])
Let X; € R*, i = 1,...,n be compact and put X = ILX;. LetG c RF
and for each i, let S; : X x G —— X; be continuous with compact
values and U; : X x G —— X; have open graph. Define
E:G—— X via

E(g) = {x € X : for each i, x; € Si(x,8); Ui(x,g)
N Si(x.g) = 2}.

;  Then E has compact values, is closed and upper hemi-continuous.

128 Proof

By 11.9 it suffices to prove that E is closed, so suppose that

(g,x) ¢ Gr E. Then for some i, either x; ¢ Si(x,g) or

Ui(x.g) N Si(x,g) # @. By 11.9, S; is closed and so in the first case
a neighborhood of (x,g) is disjoint from Gr E. In the second case, let
z; € Udx,g) N Si(x,g). Since U; has open graph, there are r}elghbor‘-
‘hoods V of z; and W, of (x,g) such that W x V' C Gr U;. Since S; is
lower hemi-continuous, there is a neighborhood W of (x,g} such jthat
(x'.g) € W, implies Si(x',g') N V # @. Thus W, N W, is a neigh-
borhood of (x,g) disjoint from Gr E. Thus Gr E is closed.

129  Proposition

Let K C R™ be compact, G C R¥, andlety: K x G —=— K be
closed. Put F(g) = {x € K : x € y(x,g)}. Then F: G —— K has
compact values, is closed and upper hemi-continuous.

12.10 Proof o '
It suffices to prove that F is closed, but this is immediate.
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12.11 Proposition

Let K C R™ be compact, G C R¥, and let y: K x G —=— R” be
upper hemi-continuous and have compact values. Put

Z(g)=1{x € K:0 € y(x,g)}). Then Z : G —— K has compact
values, is closed and upper hemi-continuous.

12.12 Proof
Exercise.

CHAPTER 13

Approximation of correspondences

130 Remark

In Theorem 13.3 we show that we can approximate the graph of a
nonempty and convex-valued closed correspondence by the graph of a
continuous function, in the sense that for any € > 0 the graph of the
continuous function can be chosen to lie in an s-neighborhood of the
graph of the correspondence. This result is due to von Neumann
[1937] and is fundamental in extending the earlier results for func-
tions to correspondences.

13.1 Lemma (Cellina [1969])

Let vy : E —— F be upper hemi-continuous and have nonempty com-
pact convex values, where E C R™ is compact and F C RF is con-
vex. For 8 > 0 define 4° via y%(x) = co za]\LfJ(x)'Y(Z). Then for every

g > 0, there is a 6 > 0 such that
Gr ¥® C N(Gr vy).
(Note that this does not say that Y3(x) C N(y(x)) for all x.)

13.2  Proof
Suppose not. Tlhen we must have a sequence (x”,y") with

(=)
(x"y" € Gry "' such that dist ((x",y"), Gr y) 2 € > 0. Now

=)
(x",y™) € Gr y " means
y" € y(%)(x") soy"€co U v(z)
’ zeN g (x")
By Caratheodory’s theorem there exist

On _ykne U z
A . taN(%)(x,;y( )

k . , . ) .
such that y" = Y Afy"" with A’ > 0, YA' = 1, and " € y(z"") with
i=0



