
Convergence of Sequences of Functions:

Some Additional Notes

Let X be an arbitrary set. We won’t assume any algebraic (i.e., vector space) or metric structure

for X, except in some of the examples (where, for example, X may be a subset of R, with the

usual properties it inherits from R).

Definition: A sequence {fn} of functions fn : X → R converges pointwise to a function

f : X → R if
∀x ∈ X : ∀ε > 0: ∃n̄ ∈ N : n > n̄⇒ |fn(x)− f(x)| < ε.

In other words, {fn} converges pointwise to f if for every point x ∈ X, the sequence of real

numbers {fn(x)} converges to the number f(x).

Note that by reversing the order of the universal quantifiers ∀x ∈ X and ∀ε > 0 in the condition

above, defining pointwise convergence, the condition can be equivalently written as

(∗) ∀ε > 0: ∀x ∈ X : ∃n̄ ∈ N : n > n̄⇒ |fn(x)− f(x)| < ε.

We’re going to be interested in bounded functions, and in the convergence of sequences of bounded

functions. We’ll denote the set of all bounded real-valued functions f : X → R on a set X as

B(X). If the set B(X) is endowed with a metric d, then (B(X), d) is a metric space, and our

definition of convergence of sequences in a metric space then applies to (B(X), d):

A sequence {fn} converges to f in the metric space (B(X), d) if

∀ε > 0: ∃n̄ ∈ N : n > n̄⇒ d(fn, f) < ε.

We’re going to be working with bounded real-valued functions, so the sup-norm is well-defined

(because for any function f ∈ B(X) the set f(X) is a bounded set in R, and therefore the

Monotone Convergence Theorem applies), so we can use the sup-norm as our metric in B(X):

d(f, g) = ‖f − g‖∞ = sup{|f(x)− g(x)| |x ∈ X}.

So our definition of convergence in the metric space (B(X), d) becomes

{fn} converges to f if and only if ∀ε > 0: ∃n̄ ∈ N : n > n̄⇒ ‖fn − f‖∞ < ε.

Example 1: Let X = {a, b, c}; let f : X → R be defined by ∀x ∈ X : f(x) = 0; and for

each n ∈ N let fn(a) = (−1)n 1
n
, fn(b) = (−1)n+1 1

n2 , and fn(c) = (−1)2n 1
n3 . Then {fn}

obviously converges pointwise to f . Also, {fn} converges to f in (B(X), ‖ · ‖∞), because for each

n ∈ N, |fn(a)| > |fn(b)| > |fn(c)|, so ‖fn − f‖∞ = |fn(a)| = 1
n
.



It’s straightforward to show that Example 1 generalizes to all finite sets X:

Proposition 1: If X is a finite set, then a sequence {fn} of functions fn : X → R converges

pointwise to f if and only if {fn} converges to f in the metric space (B(X), ‖ · ‖∞).

(Note that if X is finite, then every function f : X → R is bounded — i.e., is in B(X).)

Example 2: Let f and the sequence {fn} of functions in B([0, 1]) be defined as follows:

fn(x) =

{
1, if x 5 1

n

0 , if x > 1
n

f(x) =

{
1, if x = 0

0 , if x > 0.

Then

(a) {fn} converges pointwise to f :

If x = 0 : fn(x) = 1 = f(x) for all n ∈ N.

If x > 0 : Let n̄ be any n̄ ∈ N such that n̄ > 1
x

— i.e., x > 1
n̄
. Then for any n = n̄ we

have x > 1
n̄
> 1

n
and therefore fn(x) = 0 = f(x).

(b) {fn} does not converge to f in B([0, 1], ‖ · ‖∞):

If 0 < x < 1
n

then fn(x) = 1, while f(x) = 0; therefore ‖fn − f‖∞ = 1 for all n ∈ N.

It might seem that the convergence failure in (b) in Example 2 is because the functions fn are

discontinuous. The following example shows that this is not the case: the functions fn in this

example are all continuous (and they again converge pointwise), but they don’t converge in the

sup-norm.

Example 3: For each n ∈ N let fn : [0, 1]→ R be the function

fn(x) =

{
nx, if x 5 1

n

1 , if x = 1
n
.

Exercise: Verify in the preceding example that {fn} converges pointwise but not in the metric

space (B(X), ‖ · ‖∞).

While the preceding examples show that pointwise convergence does not imply convergence in

the sup-norm, they suggest that perhaps sup-norm convergence does imply pointwise convergence.

The following proposition verifies that this conjecture is correct. The proof is left as an exercise.

Proposition 2: If {fn} converges to f in the metric space (B(X), ‖ · ‖∞), then {fn} converges

pointwise to f .
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The reason we can’t establish sup-norm convergence in the examples is because this kind of con-

vergence requires that for any ε we can find an n̄ for which n > n̄ implies that ‖fn− f‖∞ < ε, and

therefore that |fn(x)− f(x)| < ε for every x ∈ X. The n̄ depends on ε, but it can’t depend on x

— unlike with pointwise convergence, where the n̄ can depend on ε differently for different values

of x. Convergence in the sup-norm is convergence that’s uniform across all of X.

Definition: A sequence {fn} of functions fn : X → R converges uniformly to a function

f : X → R if

(∗∗) ∀ε > 0: ∃n̄ ∈ N : ∀x ∈ X : n > n̄⇒ |fn(x)− f(x)| < ε.

Notice that the only difference between (∗) and (∗∗) is the placement of the universal quantifier

“ ∀x ∈ X : ”. Here it comes after the existence of n̄, so the single n̄ has to work for all x ∈ X; for

pointwise convergence it comes before the existence of n̄, so different numbers n̄ can be used for

different values of x.

The following proposition establishes that uniform convergence is really just another name for

sup-norm convergence:

Proposition 3: A sequence {fn} in B(X) converges uniformly to a function f ∈ B(X) if and

only if it converges in the metric ‖ · ‖∞ on B(X).

Proof: Let ε > 0.

(a) If ‖fn − f‖∞ < ε then ∀x ∈ X : |fn(x) − f(x)| < ε, from which it follows from the definitions

that if {fn} converges to f in ‖ · ‖∞ then it converges uniformly to f .

(b) If ∀x ∈ X : |fn(x)− f(x)| < .99 ε, for example, then ‖fn− f‖∞ < ε, from which it follows from

the definitions that if {fn} converges uniformly to f then it converges to f in ‖ · ‖∞. �

Uniform convergence really is a stronger kind of convergence than merely pointwise convergence

for sequences of functions. The following exercise demonstrates that pointwise convergence is not

enough to ensure uniform convergence even in the best of cases, where both the domain and target

space are the unit interval in R and all the functions (including the limit function) are continuous

— unlike Examples 2 and 3, in each of which the sequence of functions merely converged pointwise

but not uniformly, and the limit function was not continuous.

Exercise: Provide a counterexample to show that the following conjecture is false: Let f be a

bounded continuous real-valued function on [0, 1] ⊆ R, and for each n ∈ N, let fn be a bounded

continuous real-valued function on [0, 1]. If {fn} converges pointwise to f then {fn} converges

uniformly to f .
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The following theorem shows that if a sequence of continuous functions does converge uniformly,

then the limit function will be continuous.

Theorem: Let (X, d) be a metric space, and for each n ∈ N, let fn : X → R be a continuous

real-valued function on X. If {fn} converges uniformly to f : X → R, then f is continuous.

Proof: Let x ∈ X and let ε > 0. Because {fn} converges uniformly to f , there is an n ∈ N
such that

n > n⇒ ∀x ∈ X : |fn(x)− f(x)| < ε

3
.

Let n be any integer greater than n. Since fn is continuous, there is a δ > 0 such that

d(x, x) < δ ⇒ |fn(x)− fn(x)| < ε

3
.

For any x that satisfies d(x, x) < δ, the Triangle Inequality therefore yields

|f(x)− f(x)| < |f(x)− fn(x)|+ |fn(x)− fn(x)|+ |fn(x)− f(x)| < ε. �
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