
Binary Relations

Definition: A binary relation between two sets X and Y (or between the elements of X and

Y ) is a subset of X × Y — i.e., is a set of ordered pairs (x, y) ∈ X × Y .

If R is a relation between X and Y (i.e., if R ⊆ X × Y ), we often write xRy instead of (x, y) ∈ R.

We write Rc for the complement of R — i.e., xRcy if and only if (x, y) /∈ R. If X and Y are the

same set, so that the relation R is a subset of X ×X, we say that R is a relation on X.

Example 1:

X is a set of students, say X = {Ann,Bev, Carl,Doug}.
Y is a set of courses, say Y = {History,Math,Economics}.

Then X × Y has 12 elements. An example of a relation R ⊆ X × Y is the set of pairs (x, y) for

which “x is enrolled in y.” Another example is the relation R̃ defined by “xR̃y if x received an A

grade in y”. In this example we would likely have R̃ ⊆ R, i.e., xR̃y ⇒ xRy.

The following example defines two important relations associated with any function f : X → Y .

Example 2:

(a) Define G as follows: G := { (x, y) ∈ X × Y | y = f(x) }. Clearly, G is simply the graph of the

function f . But we can just as well regard G as a relation between members of X and Y , where

xGy means that y = f(x). Note that G ⊆ X × Y .

(b) Define x ∼ x′ to mean f(x) = f(x′). Note that x ∼ x for every x ∈ X; that if x ∼ x′ then

x′ ∼ x; and that if x ∼ x′ and x′ ∼ x′′, then x ∼ x′′. Any relation with these three properties is

called an equivalence relation. Equivalence relations are important; we’ll see a lot more of them

shortly. Note that this relation is a subset of X ×X.

Example 3:

Let X be an arbitrary set and let u : X → R be a real-valued function on X. If X is interpreted as

a set of alternatives and u is interpreted as a utility function that represents someone’s preference

over the alternatives, then we interpret u(x′) > u(x) to mean the person strictly prefers x′ to x

and we define the corresponding relation P on X by x′Px⇔ u(x′) > u(x). Similarly, we interpret

u(x′) = u(x) to mean the person is indifferent between x′ and x, and we define the relation I by

xIy ⇔ u(x′) = u(x); and we interpret u(x′) = u(x) to mean the person weakly prefers x′ to x

(she either prefers x′ or is indifferent), and we define the relation R by xRy ⇔ u(x′) = u(x). It’s

common to use x′ � x instead of x′Px; x′ ∼ x instead of x′Ix; and x′ % x instead of x′Rx.



The set X in Example 3 could be a set of consumption bundles in Rn, as in demand theory, but

that’s not necessary; X could be any set of alternatives over which someone has preferences.

Note that the indifference relation I, or ∼, in Example 3 is the same relation defined in Example

2(b). It therefore has the three properties described there and is an equivalence relation. The

strict preference relation P , or �, has the third property but not the other two; and the weak

preference relation R, or %, has the first and third property but not the second. These properties,

and several others, are important enough that we give them names and define them formally:

Definitions: A binary relation R on a set X is

(a) reflexive if ∀x ∈ X : xRx;

(b) symmetric if ∀x, x′ ∈ X : x′Rx⇒ xRx′;

(c) transitive if ∀x, x′, x′′ ∈ X : [x′′Rx′ & x′Rx]⇒ x′′Rx;

(d) complete if ∀x, x′ ∈ X : xRx′ or x′Rx;

(e) antisymmetric if ∀x, x′ ∈ X : [x′Rx & xRx′]⇒ x = x′

(f) asymmetric if ∀x, x′ ∈ X : [x′Rx ⇒ xRcx′]

(g) irreflexive if ∀x ∈ X : xRcx.

Example 4:

X is a set of people. Each of the following is a binary relation on X:

(a) xNy : x lives next door to y. N would typically be symmetric, irreflexive, and not transitive.

(b) xBy : x lives on the same block as y. B would typically be reflexive, symmetric, and transitive.

(c) xSy : x is a sister of y. S would typically be irreflexive, not symmetric (unless all elements of

X are female), and not transitive.

(d) xAy : x is an ancestor of y. A would typically be irreflexive, asymmetric, and transitive — a

strict preorder, as we’ll define shortly.

(e) xDy : x is a daughter of y. D would be irreflexive, asymmetric, and not transitive.

Example 3 continued:

Note that the relation % is complete and the relations � and ∼ are typically not complete. The

relations % and ∼ are typically not antisymmetric; � is vacuously antisymmetric. (“Vacuous”

because the antecedent in the definition, x′ � x & x � x′, can never be satisfied.) Can you

construct special cases of Example 3 in which � or ∼ are complete? How about special cases in

which % or ∼ are antisymmetric? (Example 5 may be helpful here.)
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Example 5:

The usual ordering of the real numbers in R, in which = is the weak ordering and > is the strict

ordering, is analogous to the relations defined in Example 3, but generally not quite the same. For

example, = is antisymmetric, and so is the equality relation, =, unlike % and ∼.

Examples 3 and 5 display the difference between an ordering of a set and what we call a pre-

ordering of a set: if % is merely a preorder but not an order, then two or more distinct elements

x and x′ can satisfy both x′ % x and x % x′ (for example, two consumption bundles x and x′

between which someone is indifferent). But if % is an order (often called a total order), that can’t

happen — x′ % x and x % x′ require that x and x′ be the same element.

Definition: A relation R on a set X is

(a) a preorder if it is transitive and either reflexive (a weak preorder) or irreflexive (a strict

preorder);

(b) an order if it is complete, transitive, and antisymmetric.

Definition: If % is a preorder on X, then

(a) the associated strict preorder, denoted �, is defined by x′ � x ⇔ [x′ % x & x 6% x′] ;

(b) the associated equivalence relation ∼ is defined by x′ ∼ x ⇔ [x′ % x & x % x′] .

Remark: The terminology in the above definition is appropriate: � is indeed a strict preorder

and ∼ is an equivalence relation.

Exercise: Provide a proof of this remark.

In economics and decision theory we’re often interested in elements that are best, or a maximum,

in X according to a preorder % — i.e., an element that’s at least as good (or at least as large) as

every other element in X. If a preorder is not complete, there may not be a maximum element,

so we also define the weaker notion of a maximal element. (Do not use Definition 3.7 in de la

Fuente.)

Definition: If % is a preorder on X, then

(a) x̂ is a maximum element for % if ∀x ∈ X : x̂ % x ;

(b) x̂ is a maximal element for % if 6 ∃x ∈ X : x � x̂ .

Similarly, x̂ is a minimum or minimal element if ∀x ∈ X : x % x̂ or 6 ∃x ∈ X : x̂ � x .
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Exercise: Prove that for any preorder % , a maximum element is also a maximal element, and

prove that if % is complete then any maximal element is also a maximum element.

Definition: If R is a binary relation on X and if x̄ ∈ X,

(a) the R-upper-contour set of x̄ is the set Rx̄ = {x ∈ X | xRx̄} , and

(b) the R-lower-contour set of x̄ is the set x̄R = {x ∈ X | x̄Rx} .

According to this definition, if % is a preorder on X we would use % x̄ and � x̄ for the weak

and strict upper-contour sets of x̄. But I find it’s generally better to use the notation Rx̄ and

Px̄ for the weak and strict %-upper-contour sets, and to use x̄R and x̄P for the weak and strict

lower-contour sets.

Exercise: Define the relation % on R2 by x′ % x ⇔ [x′
1 = x1 & x′

2 = x2] .

(a) In a diagram, depict the weak upper- and lower-contour sets of a typical point x̄ ∈ R2.

(b) Prove that % is a preorder.

(c) Is % complete? Is it antisymmetric? What is the equivalence class [x̄] of a typical x̄ ∈ R2?

(d) Let c ∈ R be an arbitrary real number, and let X = {x ∈ R2 | x1 + x2 5 c}. Is a maximal

element for % on X also a maximum element? If yes, provide a proof; if not, provide an example

of a maximal element that is not a maximum.

A preorder is a natural, intuitively appealing way to represent someone’s decision behavior: when

faced with a set X of available alternatives, we assume that his choice will be an element x̂ to

which no other element x is strictly preferred — i.e., it will be a maximal element of X with

respect to the decision-maker’s preference %. But relations are cumbersome and awkward to work

with; functions are much more tractable analytically. So if we have a given preorder % on a set

X, we would like to be able to transform it into a utility function u on X in such a way that u

and % are related as in Example 3.

Definition: Let R be a binary relation on a set X. A real-valued function u : X → R is a utility

function for R, or a representation of R, if

∀x, x′ ∈ X : u(x′) = u(x)⇔ x′Rx.

R is said to be representable if there is a utility function for R.

Compare this definition to Example 3. Note first of all that if the relation R is representable, then

according to Example 3 it must be a preorder — in fact, a complete preorder.
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Second, note that in Example 3 we went in the opposite direction to the one indicated in the

above definition: we started with the function u as the representation of someone’s preference and

defined the associated preorder %. But it’s actually preferences that we think are fundamental, not

utility functions, so we would like to know when we can find a utility function to represent a given

preorder. We’ll return to this idea later and provide conditions on a preorder % that are sufficient

to ensure that it can be represented by a utility function. You’ll see this idea in Economics 501A

as well.
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Equivalence Relations and Partitions

In Examples 2 and 3 we encountered the idea of an equivalence relation, although we didn’t single

it out with its own formal definition. Equivalence relations are one of the most ubiquitous and

fundamental ideas in mathematics, and we’ll encounter them over and over again in this course.

The notation ∼ that we used in Examples 2 and 3 is the standard notation for an equivalence

relation.

Definition: An equivalence relation on a set X is a binary relation that is reflexive, symmetric,

and transitive. Equivalence relations are typically denoted by the symbol ∼. The set {x ∈ X |
x ∼ x̄} of all members of X that are equivalent to a given member x̄ is called the equivalence

class of x̄ and is typically written [x̄]. If x ∼ x′, we say that “x is equivalent to x′.”

Example 5 continued:

X is a set of people. The relation “is the same age as” is an equivalence relation. The relation

“is a brother of” is not. The relation “lives in the same house as” is an equivalence relation. The

relation “lives next door to” is not.

Example 3 continued:

The equivalence class [x̄] of an alternative x̄ ∈ X is the set of all the alternatives that are “indifferent

to x̄” — i.e., all the alternatives x for which the decision-maker is indifferent between x and x̄. If

the set X is R2
+ and the utility function u is “nice” (we’ll leave that term undefined for now), then

[x̄] is the indifference curve containing x̄.

Remark: If % is a weak preorder, then the relation ∼ defined by x′ ∼ x⇔ [x′ % x & x % x′] is

an equivalence relation, called the equivalence relation associated with %.

Exercise: Provide a proof that the relation ∼ associated with a preorder % is an equivalence

relation.

Notice that in each of the above examples the equivalence relation “partitions” the set X into the

relation’s equivalence classes. Here’s a formal definition of the idea of a partition:

Definition: A partition of a set X is a collection P of nonempty subsets of X that satisfies the

two conditions

(1) A,B ∈ P ⇒ (A = B or A ∩B = ∅) ;

(2) ∪
A∈P

A = X.
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An informal statement of the above definition is that a partition of X is a collection of subsets

that are mutually exclusive and exhaustive. Every member of X is in one and only one member of

P .

Theorem: If ∼ is an equivalence relation on a set X, then the collection of its equivalence classes

is a partition of X. Conversely, if P is a partition of X, then the relation ∼ defined by

x ∼ x′ ⇔ ∃S ∈ P : x, x′ ∈ S

is an equivalence relation, and its equivalence classes are the elements of the partition.

Exercise: Provide a proof.

Let’s apply the notions of equivalence, equivalence classes, and partitions to preferences and their

utility function representations. First note that if a given preference has a utility function repre-

sentation, then it has many utility function representations, as the following example indicates.

Example 6:

Let u : R2
+ → R be defined by u(x) = x1x2, a Cobb-Douglas utility function, and let % be the

preference (i.e., preorder) on R2
+ defined as in Example 3. Obviously u is a representation of %.

Now define a new utility function ũ on R2
+ by ũ(x) = log[u(x) + 1] — i.e., ũ(x) = log[x1x2 + 1].

It’s easy to see that ũ is also a utility representation of %.

Definition: Let u : X → R be a real-valued function defined on the set X. The function

ũ : X → R is an order-preserving transformation of u if there is a strictly increasing real

function f : u(X)→ R such that ũ = f ◦ u — i.e., such that ∀x ∈ X : ũ(x) = f(u(x)).

Remark: Two real-valued functions u and ũ on a set X are order-preserving transformations of

one another if and only if they are both representations of the same preorder % on X.

Example 7:

Let X be a set and let U be the set of all real-valued functions on X. Define the relation ∼ on U

as follows: u ∼ ũ if ũ is an order-preserving transformation of u. Then ∼ is an equivalence relation

on U . An equivalence class [u] consists of all the utility functions on X that represent the same

preference as u. Thus, the equivalence relation ∼ partitions the set U of all real-valued functions

on X in such a way that each equivalence class in the partition corresponds to a distinct preference

% on R2
+ — obviously, to a distinct representable preference — and each distinct representable

preference corresponds to a distinct equivalence class in the partition.

Exercise: Prove that ∼ is an equivalence relation.
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In Example 7 the set of equivalence classes plays an important role: it is the same, in every

essential respect, as the set of representable preferences — every distinct preference corresponds

to a distinct equivalence class. This is a common occurrence, so we assign a name and a notation

to the set of equivalence classes generated by an equivalence relation:

Definition: Let ∼ be an equivalence relation on a set X. The quotient of X by ∼, or the

quotient set generated by ∼, denoted X/ ∼, is the set of all ∼-equivalence classes — i.e., X/ ∼
is the set { [x] | x ∈ X} .

Example 6 continued:

In Example 6, ∼ is the indifference relation derived from the utility function u, and the quotient

set R2
+/ ∼ is the set of indifference curves for the function u and also for any order-preserving

transformation of u.

Suppose someone’s preference over R2
+ is described by a complete preorder %. Can we represent

% by a utility function? In other words, can we be sure that % is representable? Example 7

suggests that perhaps the answer is yes, that every complete preorder is representable. It turns

out that this is not so. The following theorem provides conditions that guarantee that a preorder

is representable. The theorem is followed by an example of a preference that is not representable.

Representation Theorem: If a relation R on the set Rl
+ is complete, transitive, and continuous

— i.e., a complete and continuous preorder — then it is representable. Moreover, it is representable

by a continuous utility function. (We’ll define continuity for relations and functions shortly.)

Proof: Debreu, on page 56, Proposition (1), gives a proof. Jehle & Reny, on page 120, Theorem

3.1, give a proof for preorders that are complete, continuous, and strictly increasing.

Do we really need all three assumptions, or “axioms,” about a preference in order to know that it is

representable by a utility function? For example, it seems plausible that if we don’t insist that the

utility function be continuous, we may be able to at least ensure that a (possibly discontinuous)

representation of R exists if we at least know that R is a complete preorder. Or perhaps if R

satisfies one or more additional assumptions as well, but assumptions that are not as strong as

continuity, then that will be enough to ensure that R is representable. What we want in this kind

of situation is a collection of counterexamples : for each assumption in our theorem, we want an

example that demonstrates that if all the remaining assumptions are satisfied, but that one isn’t,

then R need not be representable. One such counterexample is given below: a relation R that is

complete and transitive, but is not continuous, and for which no utility function exists.
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Exercise: Provide counterexamples to show that neither completeness nor transitivity can be

dispensed with in the theorem above.

Example 8 (Lexicographic Preference):

This is an example of a preference relation — a complete preorder — which is not representable.

Of course, it’s not a continuous relation; otherwise we would have a counterexample to the truth

of the theorem. Let % on R2
+ be defined by

(x′
1, x

′
2) % (x1, x2)⇔ [x′

1 > x1 or (x′
1 = x1 & x′

2 = x2)].

See Figure 1. How would we show that % is not representable? We have to show that no utility

function could represent % — which is not so easy, as it turns out. The proof relies on a fairly

deep mathematical result: that the set of all real numbers (or any non-degenerate real interval)

is an “uncountable” set. If we accept that mathematical fact, then the proof is not so bad: we

assume that % has a representation u(·), and then we use that to establish that R+ is countable,

which we know to be false. Therefore, our assumption that % has a representation u(·) cannot be

correct. This is called an indirect proof, or a proof by contradiction.

Thus, we assume that u(·) is a utility function for %. For each x ∈ R+, define the two real numbers

a(x) = u(x, 1) and b(x) = u(x, 2) (see Figure 2). Clearly, a(x) < b(x) for each x, and therefore, for

each x, there is a rational number r(x) that lies between a(x) and b(x). Moreover, if x < x̃, then

r(x) < b(x) and b(x) < a(x̃) and a(x̃) < r(x̃); we therefore have r(x) < r(x̃) whenever x < x̃ — in

particular, x 6= x̃ ⇒ r(x) 6= r(x̃), so that r(·) is a one-to-one mapping from R+ to a subset of the

set Q of rational numbers. Since any subset of Q is countable, this implies that R+ is countable,

which we know is false. �

Note that an equivalent definition of % is the following:

(x′
1, x

′
2) � (x1, x2)⇔ [x′

1 > x1 or (x′
1 = x1 & x′

2 > x2)],

together with

(x′
1, x

′
2) % (x1, x2)⇔ (x1, x2) 6� (x′

1, x
′
2).
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Figure 1:

Figure 2:
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