
Convex Analysis

We’ll assume throughout, without always saying so, that we’re in the finite-dimensional

Euclidean vector space Rn, although sometimes, for statements that hold in any vector space,

we’ll say explicitly that we’re in a vector space V .

Definition: A set S in a vector space V is convex if for any two points x and y in S, and

any λ in the unit interval [0, 1], the point (1− λ)x+ λy is in S.

Theorem: The intersection of any collection of convex sets is convex — i.e., if for each α

in some set A the set Sα is convex, then the set
⋂
α∈A Sα is convex.

Theorem: The closure and the interior of a convex set in Rn are both convex.

Theorem: If X1, X2, . . . , Xm are convex sets, then
∑m

1 Xi is convex.

Theorem: For any sets X1, X2, . . . , Xm in Rn,
∑m

i=1 cl Xi ⊆ cl
∑m

i=1Xm — i.e., the sum of

the sets’ closures is a subset of the closure of their sum.

Exercise: Provide proofs of the above theorems and a counterexample to show that the sum

of sets’ closures need not be equal to the closure of their sum.

Definition: Let p 6= 0 ∈ Rn and let b be a real number. The set of solutions of the linear

equation p1x1 + · · · + pnxn = b is a hyperplane in Rn, and is denoted H(p, b) — i.e.,

H(p, b) = {x ∈ Rn |p · x = b}.

Remark: For any non-zero real number λ, we have H(λp, λb) = H(p, b). Therefore for

any norm ‖ · ‖ on Rn any hyperplane can be represented by a p for which ‖p‖ = 1: given

a hyperplane H(p, b) with ‖p‖ 6= 1, let λ = 1/‖p‖ and let p′ = λp and b′ = λb; then

H(p′, b′) = H(p, b) and ‖p′‖ = 1.

Definition: A closed half-space is a set of the form {x ∈ Rn | p · x 5 b} for some

p 6= 0 ∈ Rn and b ∈ R. An open half-space is a set of the form {x ∈ Rn | p · x < b} for

some p 6= 0 ∈ Rn and b ∈ R.

Remark: A closed (resp. open) half-space is the set of all points on one side of a hyperplane,

including (resp. not including) the hyperplane itself.

If p = (p1, . . . , pn) is a list of prices of some items and x = (x1, . . . , xn) is a “bundle” of the

items, then p ·x is the value of the bundle x. The hyperplane H(p, b) is the set of all bundles

that have value b, and the half-spaces on each side of the hyperplane H(p, b) are the bundles

whose value is greater than b and the bundles whose value is less than b.



Separating and Supporting Hyperplanes

Definition: The hyperplane H(p, b) separates sets X and Y in Rn if for all x ∈ X and

y ∈ Y , we have p · x 5 b 5 p · y. We also say that a hyperplane separates a set X and a

point y if it separates the sets X and {y}. We say that H(p, b) strictly separates X and

Y , or strictly separates X and y, if the inequalities are both strict. See Figures 1 and 2.

Definition: A hyperplane H(p, b) is bounding for a set S, or bounds S, if S lies entirely

on one side of H — i.e., if either ∀x ∈ S : p · x = b or ∀x ∈ S : p · x 5 b .

Definition: A hyperplane H(p, b) is supporting for a set S, or supports S, if it is bounding

for S and also contains a boundary point of S. See Figures 3 and 4.

Remark: If H(p, b) is a supporting hyperplane for a set S, then either b = sup{p ·x |x ∈ S}
(if p · x 5 b for all x ∈ S) or b = inf{p · x |x ∈ S} (if p · x = b for all x ∈ S). If S is closed,

then b = max{p · x |x ∈ S} or b = min{p · x |x ∈ S}.

The classical theorems of convex analysis are existence theorems, theorems that guarantee

the existence of a supporting hyperplane or a separating hyperplane H(p, b) — i.e., they’re

theorems that guarantee the existence of a price-list p for which all bundles in some convex

set (for example, a feasible set, or an upper-contour set) cost more or cost less than some

specified amount.

The following theorem is essential for establishing supporting and separating hyperplane

theorems. Let’s write d(x,y) for the Euclidean distance ‖x− y‖ in Rn.

Theorem: Let S be a nonempty closed set in Rn, and let x be a point which is not in S.

Then there is a point x̂ ∈ S that is closest to x — i.e., such that d(x̂,x) 5 d(x,x) for all

x ∈ S.

Proof: Let y ∈ S and let r = d(y,x). Note that y 6= x, and therefore r > 0. Define

B = clB(x, r), the closed ball of radius r about x. Note that y ∈ B and B is compact.

Therefore B ∩ S is nonempty (y ∈ B ∩ S) and compact (because S is closed). The function

d(·,x) is continuous, therefore it attains a minimum on the compact set B ∩S, say at a (not

necessarily unique) point x̂ ∈ B ∩ S. Now suppose there is a point x̃ ∈ S that is closer to

x — i.e., d(x̃,x) < d(x̂,x) 5 r, so we have x̃ ∈ B as well, and therefore x̃ ∈ B ∩ S and

d(x̃,x) < d(x̂,x), contradicting the fact that x̂ minimizes d(x,x) on B ∩ S. �

Now we can prove two theorems guaranteeing that a convex set S can be separated by a

hyperplane from any point that’s either not in S or is in the boundary of S. Then we’ll

use the theorems to establish the classical Minkowski Theorem, which guarantees that two

disjoint convex sets in Rn can be separated by a hyperplane.
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Closed-set Supporting Hyperplane Theorem: Let S be a nonempty, closed, convex

set. For any point x which is not in S, there is a hyperplane H(p, b) that supports S and

separates x and S.

Proof: Let x /∈ S and let x̂ be a point in S that is closest to x, the existence of which is

guaranteed by the preceding proposition. Let p = x̂−x and let b = p · x̂. We will show that

H(p, b) supports S and separates x and S.

We first show that p · x < b. We have p · x̂ − p · x = p · (x̂ − x) = p · p. Since x̂ 6= x, we

have p 6= 0, and therefore p · p > 0, so we have p · x̂− p · x > 0 — i.e., p · x < p · x̂ = b.

In order to show that x ∈ S ⇒ p · x = b, let x ∈ S and assume, by way of contradiction,

that p · x < b. For each λ ∈ (0, 1) define xλ = (1 − λ)x̂ + λx. (See Figure 9.) Since S is

convex and x̂,x ∈ S, we have xλ ∈ S for all λ ∈ (0, 1). We will show that for small values of

λ we have d(x,xλ) < d(x, x̂), which will provide our contradiction, since x̂ minimizes d(x,x)

on S.

First note that we have

xλ − x = (1− λ)x̂ + λx− x

= (x̂− x) + λ(x− x̂)

= p + λ(x− x̂).

We show that d(x,xλ) < d(x, x̂), or equivalently, ‖x− xλ‖2 < ‖x− x̂‖2 :

‖x− xλ‖2 = (xλ − x) · (xλ − x)

=
[
p + λ(x− x̂)

]
·
[
p + λ(x− x̂)

]
= p · p + 2λp · (x− x̂) + λ2‖x− x̂‖2

= ‖x̂− x‖2 + λg(λ),

where g(λ) := 2(p · x − p · x̂) + λ‖x − x̂‖2. Because, by assumption, p · x < p · x̂, we have

limλ→0 g(λ) < 0, and therefore for small values of λ we have ‖x − xλ‖2 < ‖x − x̂‖2 — i.e.,

d(x,xλ) < d(x, x̂), the contradiction we wished to show, thereby establishing that p · x = b

for all x ∈ S. �

Corollary: Let S be a nonempty, closed, convex set. For any point x which is not in S,

there is a hyperplane H(p, c) containing x which separates x and S.

Proof: Let H(p, b) be a hyperplane for which p ·x 5 b and x ∈ S ⇒ p ·x = b, the existence

of which is guaranteed by the theorem, and let c = p · x. (See Figure 9.) �

Corollary: A closed convex set S is the intersection of the closed half-spaces that contain

S.
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Boundary-point Supporting Hyperplane Theorem: If S is a nonempty convex set and

x is in the boundary of S, then there is a hyperplane that supports S and contains x.

Proof: Let S denote the closure of S; S is a nonempty closed convex set. Because x is a

boundary point of S, for every n ∈ N the open ball B(x, 1
n
) contains a point xn /∈ S. Note

that lim xn = x. The previous theorem ensures that for each of these points xn there is a

pn 6= 0 ∈ Rn such that

∀x ∈ S : pn · x = pn · xn; i.e., ∀x ∈ S : pn · (x− xn) = 0,

and we may assume without loss of generality that ‖pn‖ = 1. The set of all p ∈ Rn such

that ‖p‖ = 1 is the unit sphere in Rn, a compact set, so the sequence {pn} has a convergent

subsequence. We restrict attention to this subsequence, which we also denote by {pn}, and

we denote its limit by p. Note that ‖p‖ = 1; in particular, p 6= 0. We also denote the

corresponding subsequence of {xn} by {xn}, and for each n ∈ N we now have {xn} → x,

{pn} → p, and

∀x ∈ S : pn · (x− xn) = 0.

Therefore

∀x ∈ S : p · (x− x) = 0; i.e., ∀x ∈ S : p · x = p · x) = 0. �

Combining the two previous theorems gives us a theorem about any convex set and any point

not in the set.

Theorem: Let S be a nonempty convex set. For any point x which is not in S, there is a

hyperplane that supports S and separates S and x.

Proof: If x is a boundary point of S then the Boundary-point Supporting Hyperplane

Theorem yields the desired result. If x is not a boundary point of S, then x /∈ S, a nonempty,

closed, convex set, and the Closed-set Supporting Hyperplane Theorem yields the desired

result. �

Note that a separating or supporting hyperplane might be unique, as in Figures 2 and 3,

but these theorems don’t guarantee uniqueness, as shown in Figures 1 and 4. The theorems

require that the set(s) are convex and (in some cases) closed, but these are not necessary

conditions for the existence of a separating or supporting hyperplane: in Figure 1 the set X is

not convex and either set might not be closed, but there is still a separating hyperplane. On

the other hand, we can’t dispense with the condition that the set(s) are convex; otherwise,

as in Figures 5 and 6, there might not exist a separating or supporting hyperplane. Figure 1

also shows that sets need not be bounded.
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Minkowski’s Theorem: Let S1 and S2 be nonempty disjoint convex sets. Then there exist

p 6= 0 ∈ Rn and b ∈ R such that ∀x1 ∈ S1,x2 ∈ S2 : p · x2 5 b 5 p · x1 — i.e., there is a

hyperplane that separates the sets.

Proof: We first show that since S1 and S2 are disjoint, 0 /∈ S1−S2 = S1 + (−S2). Suppose

instead that 0 ∈ S1 − S2. Then there exist x1 ∈ S1 and x2 ∈ S2 such that x1 − x2 = 0. But

then x2 = x1, and we therefore have x1 ∈ S1 and x1 ∈ S2, i.e., S1 and S2 are not disjoint,

a contradiction. Therefore 0 /∈ S1 − S2. Since S1 − S2 is nonempty and convex (as the sum

of convex sets), there is a hyperplane that separates the set S1 − S2 and the point 0, so we

have
∀z ∈ S1 − S2 : p · z = p · 0 = 0; i.e.,

∀x1 ∈ S1,x2 ∈ S2 : p · (x1 − x2) = 0; i.e.,

∀x1 ∈ S1,x2 ∈ S2 : p · x1 = p · x2.

Clearly infx1∈S1 p ·x1 and supx2∈S2
p ·x2 both exist and satisfy supx2∈S2

p ·x2 5 infx1∈S1 p ·x1.

Let b be any real number that satisfies

sup
x2∈S2

p · x2 5 b 5 inf
x1∈S1

p · x1,

and then we have

∀x1 ∈ S1,x2 ∈ S2 : p · x2 5 sup
x∈S2

p · x 5 b 5 inf
x∈S1

p · x 5 p · x1. �
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Convex Optimization

Here’s an example of the kind of theorem we can often obtain by using convex analysis in

place of differentiability.

Theorem: Let f : X → R be a continuous quasiconcave function on a convex domain

X ⊆ Rn; and let S be a convex subset of X. Let x be an element of S at which f does not

attain a local maximum on X. Then x maximizes f on S if and only if there is a p 6= 0 ∈ Rn

such that

(a) x maximizes f(x) s.t. p · x 5 p · x and (b) x maximizes p · x s.t. x ∈ S.

Proof: It’s easy to see that (a) and (b) together imply that x maximizes f on S: if x ∈ S,

then p · x 5 p · x according to (b); and therefore f(x) 5 f(x) according to (a).

To prove the converse, we assume that x maximizes f on S, and we will show that there

is a p 6= 0 ∈ Rn that satisfies (a) and (b). Let U = {x ∈ X | f(x) > f(x)}, the strict

f -upper-contour set of x. U is nonempty and convex, and is disjoint from S; and since S is

also nonempty and convex, the Minkowski Theorem guarantees the existence of a p 6= 0 ∈ Rn

and a real number b > 0 such that the hyperplane H(p, b) separates the two sets — i.e.,

(∗) ∀x ∈ S : p · x 5 b and (∗∗) ∀x ∈ U : b 5 p · x.

We first show that b = p · x. Because x ∈ S, we have p · x 5 b, according to (∗). We show

that p · x = b as follows: for each n ∈ N let xn be such that xn ∈ B(x, 1
n
) and f(xn) > f(x)

— i.e., xn ∈ U for each n (these points xn exist because x is not a local maximum of f).

Therefore (∗∗) implies that p ·xn = b for each n. Since {xn} converges to x, we have p ·x = b.

Therefore we have established that p · x = b.

Conclusion (b) of the theorem now follows immediately: we have x ∈ S, and according to

(∗) we have p · x 5 b = p · x for all x ∈ S.

In order to establish (a), suppose that (a) fails to hold — i.e., there is a point x̂ that satisfies

both p · x̂ 5 p · x = b and f(x̂) > f(x) — i.e., x̂ ∈ U . Since U is open (because f is

continuous) and nonempty, there is an open ball B(x̂, ε) ⊆ U ; and since p · x̂ 5 p ·x = b, the

open ball B(x̂, ε) contains points x that satisfy p · x < p · x 5 b, a violation of (∗∗). �
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Here are several observations about the convex optimization theorem we’ve just proved:

(1) The theorem is an existence theorem: its conclusion (in one direction) says that there

exists a vector p that satisfies (a) and (b). And the p that exists is often interpretable as

a list (a vector) of prices, which should be clear in both (a) and (b) — which would then

say (a) that x maximizes f among all the alternatives x whose value (at prices p) does not

exceed the value of x; and (b) that x maximizes the value of x (for example, the profit it

yields) among all the “feasible” alternatives x ∈ S. Note that the theorem fits exactly our

Robinson Crusoe example, ensuring the existence of “decentralizing” or efficiency prices.

(2) No mention is made of differentiability of f or of differentiability of any functions that

might define the set S (see (4) below). So the theorem ensures the existence of a separating

p in a broad range of situations where differentiability is not present.

(3) The function f could be replaced with a quasiconcave, locally nonsatiated, continuous

preference relation %. In that case (a) would say that x is maximal in the set {x |p·x 5 p·x}.

(4) The constraint set S, or feasible set, is often defined by a set of inequality constraints,

such as
gi(x) 5 ci (i = 1, . . . ,m)

where each function gi(·) is quasiconvex, as in Figure 7. In particular, the constraints could

be linear, as in Figure 8.

Our next theorem is the Second Welfare Theorem (more precisely, the Second Welfare The-

orem is the corollary of the next theorem).
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Theorem: For each i ∈ N = {1, . . . , n}, let ui : X → R be a continuous quasiconcave

function on a convex set X ⊆ R` that is unbounded above. Assume that for at least one

i ∈ N , ui is strictly increasing (wlog, let this be u1). Let (x̂i)i∈N be a Pareto allocation for

the allocation problem
(
(ui)i∈N , x̊

)
, where x̊ ∈ R`

+. Then there is a price-list p ∈ R`
+ such

that ∀i ∈ N : x̂i minimizes p · x on the upper-contour set Ui = {x ∈ X |ui(x) = ui(x̂i)}.

Corollary: If x̊i = x̂i for each i ∈ N ; if the economy E =
(
ui, x̊i

)n
1

satisfies the assumptions

of the theorem; and if, for each i ∈ N there is a bundle xi ∈ X that satisfies p · xi < p · x̊i,
then

(
p, (x̂i)N

)
is a Walrasian equilbrium of the economy E.

Proof of the Theorem: Because (x̂i)N is Pareto and u1 is strictly increasing, we have∑n
1 x̂i = x̊. Let U◦1 denote the strict upper-contour set {x ∈ X |u1(x) > u1(x̂1)}, and let U

and U◦ denote the sets

U =
n∑
i=1

Ui and U◦ = U◦1 +
n∑
i=2

Ui.

Clearly x̊ ∈ U , and because (x̂i)i∈N is Pareto, we also have x̊ /∈ U◦.

We first show that x̊ ∈ bdy U◦. Each ui is continuous, therefore each Ui is closed, and we

therefore have cl Ui = Ui. It’s easy to show that cl U◦1 = U1. Since the sum of the closures of

sets is always a subset of the closure of the sum of the sets (by a theorem above), we have

U =
n∑
i=1

Ui = cl U◦1 +
n∑
i=2

cl Ui ⊆ cl
(
U◦1 +

n∑
i=2

Ui
)

= cl U◦.

Since x̊ ∈ U ⊆ cl U◦ — i.e., x̊ ∈ cl U◦ — and x̊ /∈ U◦, we have x̊ ∈ bdy U◦.

We next show that U◦ is nonempty and convex. Each ui is quasiconcave, therefore each set

Ui is convex (and is obviously nonempty); U◦1 is also convex, and is nonempty because u1 is

strictly increasing and X has no upper bound. Therefore U◦ is nonempty and convex, as the

sum of nonempty convex sets.

Since U◦ is nonempty and convex and x̊ ∈ bdy U◦, the Supporting Hyperplane Theorem

ensures that there is a hyperplane that supports U◦ and contains x̊ — i.e., there exists a

p 6= 0 ∈ R` such that p · x = p · x̊ for all x ∈ U◦. Since U is unbounded above, p ∈ R`
+.

Now let x ∈ U ; we’ve just shown that U ⊆ cl U◦, so we have x ∈ cl U◦, and therefore there

is a sequence {x(k)} in U◦ that converges to x. Since each term x(k) is in U◦, it satisfies

p · x(k) = p · x̊, and therefore the sequence’s limit, x, satisfies p · x = p · x̊. Thus, every

x ∈ U satisfies p · x = p · x̊ — i.e., x̊ minimizes p · x on U . The Sum-of-Sets Maximization

Theorem therefore guarantees that for every i ∈ N , x̂i minimizes p · x on the set Ui. �
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Some Additional Theorems

Here are some additional definitions and theorems that are important and useful.

Definition: The convex hull of a set S, denoted convS, is the intersection of all convex

sets that contain S.

Remark: For any set S, convS is convex (as the intersection of a collection of convex sets)

and is therefore the smallest convex set containing S.

Definition: A convex combination of a finite set {x1, . . . ,xm} of points is a linear com-

bination of the points, with the restriction that the coefficients are non-negative and sum

to 1 — i.e., a point x of the form x = λ1x1 + · · · + λmxm for some scalars λ1, . . . , λm that

satisfy λi = 0 for all i and
∑
λi = 1. (Important note: As with linear combinations, convex

combinations are only defined for finite sets of vectors.)

Remark: The convex hull of a set S is the set of all convex combinations of points in S.

A point x ∈ convS is therefore a convex combination of a finite number of points in S;

but the required number of points for a particular x might be very large. The following

theorem ensures that any point in the convex hull of S can actually be expressed as a convex

combination of a small number of points in S.

Caratheodory’s Theorem: Any point in the convex hull of a set S j Rn is a convex

combination of at most n+ 1 points in S.

This result is easy to see for any finite set S in R2: if S has m elements, the convex hull of S

is a polygon with no more then m sides, and it’s easy to see that any point in the polygon can

be expressed as a convex combination of no more than three of the vertices of the polygon

— i.e., no more than three of the members of S.

Definition: An extreme point of a convex set S is a point in S that is not a convex

combination of any other points in S.

Examples: In R2, if S is a polygon, then the extreme points of S are the vertices of S. In

Rn, if S is a closed ball (using the Euclidean norm!), then every point in S is an extreme

point; and if S is an open convex set, then S has no extreme points.

Krein-Milman Theorem: A compact convex set is the convex hull of its extreme points.
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Figure 1 Figure 2

Figure 3 Figure 4
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Figure 5 Figure 6

Figure 7 Figure 8
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Figure 9
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