Convex Analysis

We’ll assume throughout, without always saying so, that we’re in the finite-dimensional
Euclidean vector space R", although sometimes, for statements that hold in any vector space,

we’ll say explicitly that we're in a vector space V.

Definition: A set S in a vector space V is convex if for any two points x and y in S, and
any A in the unit interval [0, 1], the point (1 — X\)z + Ay is in S.

Theorem: The intersection of any collection of convex sets is convex — i.e., if for each a

in some set A the set S, is convex, then the set ﬂae 4 Sq Is convex.
Theorem: The closure and the interior of a convex set in R" are both convex.
Theorem: If X, X,,..., X, are convex sets, then > " X, is convex.

Theorem: For any sets X;, Xo, ..., X, mR", 3" ¢l X; Cecl > X, — i.e., the sum of

the sets’ closures is a subset of the closure of their sum.

Exercise: Provide proofs of the above theorems and a counterexample to show that the sum

of sets’ closures need not be equal to the closure of their sum.

Definition: Let p # 0 € R™ and let b be a real number. The set of solutions of the linear
equation pyzy; + -+ + py,xr, = b is a hyperplane in R", and is denoted H(p,b) — i.e.,
H(p,b) = {x € R" |p-x = b},

Remark: For any non-zero real number A\, we have H(Ap,\b) = H(p,b). Therefore for
any norm || - || on R™ any hyperplane can be represented by a p for which ||p|| = 1: given
a hyperplane H(p,b) with ||p|| # 1, let A = 1/||p|| and let p’ = Ap and b’ = Ab; then
H(p',b') = H(p,b) and |p'|| = 1.

Definition: A closed half-space is a set of the form {zr € R" | p-x < b} for some
p #0 € R" and b € R. An open half-space is a set of the form {z € R" | p-x < b} for
some p# 0 € R" and b € R.

Remark: A closed (resp. open) half-space is the set of all points on one side of a hyperplane,

including (resp. not including) the hyperplane itself.

If p=(p1,...,pn) is a list of prices of some items and x = (z1,...,x,) is a “bundle” of the
items, then p-x is the value of the bundle x. The hyperplane H(p,b) is the set of all bundles
that have value b, and the half-spaces on each side of the hyperplane H(p,b) are the bundles

whose value is greater than b and the bundles whose value is less than b.



Separating and Supporting Hyperplanes

Definition: The hyperplane H(p,b) separates sets X and Y in R if for all x € X and
yeY, wehave p-x S b < p-y. We also say that a hyperplane separates a set X and a
point y if it separates the sets X and {y}. We say that H(p,b) strictly separates X and
Y, or strictly separates X and y, if the inequalities are both strict. See Figures 1 and 2.

Definition: A hyperplane H(p,b) is bounding for a set S, or bounds S, if S lies entirely
on one side of H — id.e., if either Vx € S:p-x2borVxe S:p-x<b.

Definition: A hyperplane H(p,b) is supporting for a set .S, or supports S, if it is bounding

for S and also contains a boundary point of S. See Figures 3 and 4.

Remark: If H(p,b) is a supporting hyperplane for a set S, then either b = sup{p-x|x € S}
(ifp-x=bforallxe S)orb=inf{p-x|xe€ S} (ifp-x=bforalxes). If Sis closed,
then b = max{p-x|x € S} or b = min{p - x|x € S}.

The classical theorems of convex analysis are existence theorems, theorems that guarantee
the existence of a supporting hyperplane or a separating hyperplane H(p,b) — i.e., they're
theorems that guarantee the existence of a price-list p for which all bundles in some convex
set (for example, a feasible set, or an upper-contour set) cost more or cost less than some

specified amount.

The following theorem is essential for establishing supporting and separating hyperplane

theorems. Let’s write d(x,y) for the Euclidean distance ||x — y|| in R™.

Theorem: Let S be a nonempty closed set in R", and let X be a point which is not in S.
Then there is a point X € S that is closest to X — i.e., such that d(X,X) < d(x,X) for all
x e S.

Proof: Let y € S and let r = d(y,X). Note that y # X, and therefore » > 0. Define
B = clB(X,r), the closed ball of radius r about X. Note that y € B and B is compact.
Therefore BN S is nonempty (y € BN S) and compact (because S is closed). The function
d(-,X) is continuous, therefore it attains a minimum on the compact set BN S, say at a (not
necessarily unique) point X € BN S. Now suppose there is a point X € S that is closer to
X de, dXX) < dX,X) < r, so we have X € B as well, and therefore X € BN S and
d(%,X) < d(X,X), contradicting the fact that X minimizes d(x,X) on BN S. A

Now we can prove two theorems guaranteeing that a convex set S can be separated by a
hyperplane from any point that’s either not in S or is in the boundary of S. Then we’ll
use the theorems to establish the classical Minkowski Theorem, which guarantees that two

disjoint convex sets in R™ can be separated by a hyperplane.



Closed-set Supporting Hyperplane Theorem: Let S be a nonempty, closed, convex
set. For any point X which is not in S, there is a hyperplane H(p,b) that supports S and
separates X and S.

Proof: Let X ¢ S and let X be a point in S that is closest to X, the existence of which is
guaranteed by the preceding proposition. Let p = X —X and let b = p-X. We will show that
H(p,b) supports S and separates X and S.

We first show that p-X < b. Wehave p-X—p-X=p-(X—X) = p-p. Since X # X, we
have p # 0, and therefore p-p >0,sowe have p-X—p-X>0—ide,p-X<p-X=0.

In order to show that x € S = p-x = b, let x € S and assume, by way of contradiction,
that p-x < b. For each A € (0,1) define x* = (1 — \)X + Mx. (See Figure 9.) Since S is
convex and X,x € S, we have x* € S for all A € (0,1). We will show that for small values of
A we have d(X,x*) < d(X,X), which will provide our contradiction, since X minimizes d(X, x)

on S.

First note that we have
X —X=(1-MNX+Ix—X
=(X—X)+ A(x —X)
=p+ Ax —X).

We show that d(X,x") < d(X,X), or equivalently, ||X —x*||? < ||x — x||?:

% - x| = (x*-%) - (x* - %)
=[p+Ax—%X)] [P+ Ax—X)]
=p-p+2\p-(x—X)+ \|x—x|?
= [IX = X[* + Ag(N),

where g(\) :=2(p-x — p - X) + A|x — X||?. Because, by assumption, p - x < p - X, we have
limy_o g(A\) < 0, and therefore for small values of A we have ||Xx — x*||? < |[|x — X||? — i.e.,
d(X,x*) < d(%,X), the contradiction we wished to show, thereby establishing that p-x = b
forallxe S. W

Corollary: Let S be a nonempty, closed, convex set. For any point X which is not in 5,

there is a hyperplane H(p,c¢) containing X which separates X and S.

Proof: Let H(p,b) be a hyperplane for which p-X < band x € S = p-x 2 b, the existence
of which is guaranteed by the theorem, and let ¢ = p - X. (See Figure 9.) W

Corollary: A closed convex set S is the intersection of the closed half-spaces that contain

S.



Boundary-point Supporting Hyperplane Theorem: If S is a nonempty convex set and
X is in the boundary of S, then there is a hyperplane that supports S and contains X.
Proof: Let S denote the closure of S; S is a nonempty closed convex set. Because X is a
boundary point of S, for every n € N the open ball B(X, %) contains a point x, ¢ S. Note
that limx, = X. The previous theorem ensures that for each of these points x,, there is a

pn # 0 € R™ such that

VX ES: P X2Pn- Xy, Ge, VXES: p,-(x—%x,) 20,

and we may assume without loss of generality that ||p,| = 1. The set of all p € R" such
that ||p|| = 1 is the unit sphere in R™, a compact set, so the sequence {p,} has a convergent
subsequence. We restrict attention to this subsequence, which we also denote by {p,}, and
we denote its limit by p. Note that ||p|| = 1; in particular, p # 0. We also denote the
corresponding subsequence of {x,} by {x,}, and for each n € N we now have {x,} — X,
{p»} — P, and

Vx€S:pp-(x—x%,) 20.

Therefore
VxeS:p-(x—%X)20; de,VxeS:p-x2p-X)=20. &

Combining the two previous theorems gives us a theorem about any convex set and any point
not in the set.

Theorem: Let S be a nonempty convex set. For any point X which is not in .S, there is a

hyperplane that supports S and separates S and X.

Proof: If X is a boundary point of S then the Boundary-point Supporting Hyperplane
Theorem yields the desired result. If X is not a boundary point of S, then X ¢ S, a nonempty,
closed, convex set, and the Closed-set Supporting Hyperplane Theorem yields the desired
result. W

Note that a separating or supporting hyperplane might be unique, as in Figures 2 and 3,
but these theorems don’t guarantee uniqueness, as shown in Figures 1 and 4. The theorems
require that the set(s) are convex and (in some cases) closed, but these are not necessary
conditions for the existence of a separating or supporting hyperplane: in Figure 1 the set X is
not convex and either set might not be closed, but there is still a separating hyperplane. On
the other hand, we can’t dispense with the condition that the set(s) are convex; otherwise,
as in Figures 5 and 6, there might not exist a separating or supporting hyperplane. Figure 1

also shows that sets need not be bounded.



Minkowski’s Theorem: Let S; and S; be nonempty disjoint convex sets. Then there exist
p#0 € R"”and b € R such that Vx; € S;,x0 € So:p-x2 S b < p-x; — i.e., there is a
hyperplane that separates the sets.

Proof: We first show that since S; and S are disjoint, 0 ¢ S; — Sy = S; + (—S3). Suppose
instead that 0 € S; — S,. Then there exist x; € S; and x5 € S5 such that x; — x5 = 0. But
then x5, = x;, and we therefore have x; € 57 and x; € S5, i.e., S; and S5 are not disjoint,
a contradiction. Therefore 0 ¢ S; — Sy. Since S; — S5 is nonempty and convex (as the sum
of convex sets), there is a hyperplane that separates the set S; — Sy and the point 0, so we
have

Vze S —Sy:p-z=2p-0=0; ie.,
Vx, € Sl,XQ €Sy P (Xl — X2) z O; i.e.,
\V/X1 S Sl,XQ GSQI | L . §] zp-Xg.

Clearly infy, cg, p-X; and sup,,cg, P-X2 both exist and satisfy sup,, g, P-X2 < infy cg, P-X.
Let b be any real number that satisfies

sup p-xp S b= inf p-xy,
X0ESs x1€51

and then we have

VX1 €51,x0€ S :p- X Ssupp xS0 inf p-x<p-x;. B
x€S2 XESI



Convex Optimization

Here’s an example of the kind of theorem we can often obtain by using convex analysis in

place of differentiability.

Theorem: Let f : X — R be a continuous quasiconcave function on a convex domain
X CR" and let S be a convex subset of X. Let X be an element of S at which f does not
attain a local maximum on X. Then X maximizes f on S if and only if there is a p # 0 € R"
such that

(a) X maximizes f(x) s.t. p-x<p-X and (b) X maximizes p-x s.t. x € S.

Proof: It’s easy to see that (a) and (b) together imply that X maximizes f on S: if x € S,
then p - x < p - X according to (b); and therefore f(x) < f(X) according to (a).

To prove the converse, we assume that X maximizes f on .S, and we will show that there
is a p # 0 € R” that satisfies (a) and (b). Let U = {x € X | f(x) > f(X)}, the strict
f-upper-contour set of X. U is nonempty and convex, and is disjoint from S; and since S is
also nonempty and convex, the Minkowski Theorem guarantees the existence of a p # 0 € R"

and a real number b > 0 such that the hyperplane H(p, b) separates the two sets — i.e.,
(x) VxeS:p-x=b and (xx) VxeU:b<p-x.

We first show that b = p - X. Because X € S, we have p - X < b, according to (x). We show
that p-X 2 b as follows: for cach n € N let x,, be such that x,, € B(X, ) and f(x,) > f(X)
— d.e., X, € U for each n (these points x,, exist because X is not a local maximum of f).
Therefore (xx) implies that p-x, = b for each n. Since {x,} converges to X, we have p-X = b.

Therefore we have established that p - X = b.

Conclusion (b) of the theorem now follows immediately: we have X € S, and according to

(*) wehave p-x S b=p-Xforallx € S.

In order to establish (a), suppose that (a) fails to hold — i.e., there is a point X that satisfies
both p-X < p-X =band f(X) > f(X) — i.e, X € U. Since U is open (because f is
continuous) and nonempty, there is an open ball B(X,¢) C U; and since p-X < p-X = b, the

open ball B(X, €) contains points x that satisfy p-x < p-X = b, a violation of (). |



Here are several observations about the convex optimization theorem we’ve just proved:

(1) The theorem is an existence theorem: its conclusion (in one direction) says that there
erists a vector p that satisfies (a) and (b). And the p that exists is often interpretable as
a list (a vector) of prices, which should be clear in both (a) and (b) — which would then
say (a) that X maximizes f among all the alternatives x whose value (at prices p) does not
exceed the value of X; and (b) that X maximizes the value of x (for example, the profit it
yields) among all the “feasible” alternatives x € S. Note that the theorem fits exactly our

Robinson Crusoe example, ensuring the existence of “decentralizing” or efficiency prices.

(2) No mention is made of differentiability of f or of differentiability of any functions that
might define the set S (see (4) below). So the theorem ensures the existence of a separating

p in a broad range of situations where differentiability is not present.

(3) The function f could be replaced with a quasiconcave, locally nonsatiated, continuous

preference relation 2Z. In that case (a) would say that x is maximal in the set {x |p-x < p-X}.

(4) The constraint set S, or feasible set, is often defined by a set of inequality constraints,
such as

gi(X)éci (Z:]-avm)
where each function g;(+) is quasiconvex, as in Figure 7. In particular, the constraints could

be linear, as in Figure 8.

Our next theorem is the Second Welfare Theorem (more precisely, the Second Welfare The-

orem is the corollary of the next theorem).



Theorem: For each i € N = {1,...,n}, let «' : X — R be a continuous quasiconcave
function on a convex set X C R’ that is unbounded above. Assume that for at least one
i € N, u' is strictly increasing (wlog, let this be u'). Let (X%);ey be a Pareto allocation for
the allocation problem ((u’),e N,f{), where x € R%. Then there is a price-list p € R such
that Vi € N : X’ minimizes p - x on the upper-contour set U; = {x € X |u’(x) = u'(X")}.

n
1

of the theorem; and if, for each i € N there is a bundle x* € X that satisfies p-x' < p - X',

Corollary: If x* = X' for each i € N; if the economy E = (u’,x")] satisfies the assumptions

then (p, (X')y) is a Walrasian equilbrium of the economy E.

Proof of the Theorem: Because (X')y is Pareto and u' is strictly increasing, we have
Y 1X" =x. Let Uy denote the strict upper-contour set {x € X |u!(x) > u'(x")}, and let U
and U° denote the sets

U:iUi and  U°= Uf+iUi.
=1 =2

Clearly x € U, and because (X');cy is Pareto, we also have x ¢ U°.

We first show that x € bdy U°. Each u' is continuous, therefore each U; is closed, and we
therefore have cl U; = U;. It’s easy to show that cl Uy = U;. Since the sum of the closures of

sets is always a subset of the closure of the sum of the sets (by a theorem above), we have

U—iUi—clUijiclUigcl(UeriUi) =clU°.
1=2

i=1 1=2

Since x € U C clU° — i.e., x € clU° — and x ¢ U°, we have x € bdy U°.

We next show that U° is nonempty and convex. Each u’ is quasiconcave, therefore each set
U; is convex (and is obviously nonempty); Uy is also convex, and is nonempty because u' is
strictly increasing and X has no upper bound. Therefore U° is nonempty and convex, as the

sum of nonempty convex sets.

Since U° is nonempty and convex and x € bdy U°, the Supporting Hyperplane Theorem
ensures that there is a hyperplane that supports U° and contains x — i.e., there exists a
p # 0 € R’ such that p-x = p-x for all x € U°. Since U is unbounded above, p € R

Now let x € U; we’ve just shown that U C ¢l U®, so we have x € ¢l U°, and therefore there
is a sequence {x(k)} in U° that converges to x. Since each term x(k) is in U°, it satisfies
p - x(k) 2 p - x, and therefore the sequence’s limit, x, satisfies p-x = p - x. Thus, every
x € U satisfies p- X 2 p-X — i.e., X minimizes p - x on U. The Sum-of-Sets Maximization

Theorem therefore guarantees that for every i € N, X’ minimizes p - x on the set U;. W



Some Additional Theorems

Here are some additional definitions and theorems that are important and useful.

Definition: The convex hull of a set .S, denoted convS, is the intersection of all convex

sets that contain S.

Remark: For any set S, convS is convex (as the intersection of a collection of convex sets)

and is therefore the smallest convex set containing S.

Definition: A convex combination of a finite set {xi,...,x,,} of points is a linear com-
bination of the points, with the restriction that the coefficients are non-negative and sum
to 1 — id.e., a point x of the form x = \yx; + - -+ + \,;X,,, for some scalars Ay, ..., A, that
satisfy \; = 0 for all ¢ and > \; = 1. (Important note: As with linear combinations, convex

combinations are only defined for finite sets of vectors.)
Remark: The convex hull of a set S is the set of all convex combinations of points in .S.

A point x € convS is therefore a convex combination of a finite number of points in S;
but the required number of points for a particular x might be very large. The following
theorem ensures that any point in the convex hull of S can actually be expressed as a convex

combination of a small number of points in S.

Caratheodory’s Theorem: Any point in the convex hull of a set S & R" is a convex

combination of at most n + 1 points in 5.

This result is easy to see for any finite set S in R2: if S has m elements, the convex hull of S
is a polygon with no more then m sides, and it’s easy to see that any point in the polygon can
be expressed as a convex combination of no more than three of the vertices of the polygon

— 4.e., no more than three of the members of S.

Definition: An extreme point of a convex set S is a point in S that is not a convex

combination of any other points in S.

Examples: In R?, if S is a polygon, then the extreme points of S are the vertices of S. In
R™, if S is a closed ball (using the Euclidean norm!), then every point in S is an extreme

point; and if S is an open convex set, then S has no extreme points.

Krein-Milman Theorem: A compact convex set is the convex hull of its extreme points.
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