
Correspondences

Functions are single-valued. For a function f : X → Y , every x ∈ X is mapped to one

and only one point y ∈ Y , the point y = f(x). Thus, for example, when a consumer with

a strictly quasiconcave utility function behaves according to the Utility Maximization

Hypothesis, we can summarize his market behavior by his demand function: the bundle

he chooses is a (single-valued) function of the price-list he faces.

But suppose the consumer’s utility function is not strictly quasiconcave; for example,

suppose it is u(x1, x2) = ax1 +x2. For any price-list that satisfies p1 = ap2, this consumer

is indifferent among all the bundles on his budget constraint {x ∈ R2
+ | p1x1 + p2x2 =

p1x̊1 + p2x̊2 } = {x ∈ R2
+ | ax1 + x2 = ax̊1 + x̊2 }. He’ll choose some bundle on his budget

constraint, but we can’t say which bundle it will be.

This situation, in which we need to analyze behavior that does not manifest itself in

uniquely determined actions, is extremely common in economics and game theory. And if

individual behavior is not single-valued, then aggregate behavior won’t be single-valued

either: in the demand theory example above, if some consumer’s demand function is not

single-valued, then the market demand function won’t be single-valued. We evidently

need a new analytical tool, the multivalued function or correspondence.

Definition: A correspondence f from a set X to a set Y , denoted f : X →→ Y , is

a function from X to the set 2Y of all subsets of Y . Correspondences are also called

multivalued functions or set-valued functions.

A correspondence f : X →→ Y is therefore a set-valued function from X to Y — for every

x ∈ X, f(x) is a subset of Y .

The following examples are depicted in Figures 1-3.

Example 1: f : R+ →→ R is defined by f(x) = {
√
x,−
√
x}.

Example 2: f : R+ →→ R is defined by

f(x) =

{
[0, 1

x
] if x > 0

{0} if x = 0.
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Example 3: f : R+ →→ [0, 1] is defined by

f(x) =


[x, 1

2
] if 0 5 x < 1

2

{1
4
, 1
2
} ∪ [3

4
, 1] if x = 1

2

{1
4
} ∪ [3

4
, 1] if x > 1

2

Definition: The graph of a correspondence f : X →→ Y , denoted Gr(f), is the set

Gr(f) := {(x, y) ∈ X × Y | y ∈ f(x) }.

Definition: If f : X →→ Y is a correspondence, a function f̊ : X → Y is a selection

from f if ∀x ∈ X : f̊(x) ∈ f(x) — equivalently, ∀x ∈ X : {f̊(x)} ⊆ f(x).

Remark: A correspondence f : X →→ Y has a unique selection f̊ if and only if f is

everywhere singleton-valued — i.e., ∀x ∈ X : f(x) is a singleton, i.e., ∀x ∈ X : f(x) =

{f̊(x)}.

Figure 1 Figure 2

Figure 3
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Continuity of Correspondences

From now on we’ll assume that (X, dX) and (Y, dY ) are metric spaces. In order to develop

the idea of continuity for correspondences, let’s begin by recalling the definition of a

continuous function:

Definition: A function f : X → Y is continuous at x if for every open set V such that

f(x) ∈ V , there is an open set U such that x ∈ U and x ∈ U ⇒ f(x) ∈ V .

Can we adapt this definition to correspondences in a way that still captures the idea of

continuity? At first it may appear that we can’t: if f is a correspondence instead of a

function, then “f(x) ∈ V ” and “f(x) ∈ V ” in the definition have no meaning, because

f(x) and f(x) are sets. But notice that, for functions at least, we can write “f(x) ∈ V ”

in two different but equivalent ways:

(a) {f(x)} ⊆ V and (b) {f(x)} ∩ V 6= ∅,

both of which are equivalent to f(x) ∈ V . So when f is a correspondence, we’ll replace

“f(x) ∈ V ” with either

(a′) f(x) ⊆ V or (b′) f(x) ∩ V 6= ∅.

This will give us two alternative definitions — note that (a′) and (b′) are different if f(x)

is not a singleton — and under both definitions a singleton-valued correspondence f will

be “continuous” if and only if its unique selection f̊(x) is a continuous function.

Definition: A correspondence f : X →→ Y is

(a) upper hemicontinuous (UHC) at x ∈ X if for every open set V such that f(x) ⊆ V ,

there is an open set U such that x ∈ U and x ∈ U ⇒ f(x) ⊆ V ;

(b) lower hemicontinuous (LHC) at x ∈ X if for every open set V such that f(x)∩V 6=
∅, there is an open set U such that x ∈ U and x ∈ U ⇒ f(x) ∩ V 6= ∅.

(c) continuous at x ∈ X if it is both UHC and LHC at x.

(d) A correspondence is UHC/LHC/continuous on X if it is UHC/LHC/continuous at

each x ∈ X.

Exercise: Verify that in Example 1 the correspondence f is both UHC and LHC on R+.

Verify that in Example 2, f is both UHC and LHC at every x ∈ R++, and that f is LHC

but not UHC at x = 0. Verify that in Example 3, f is UHC but not LHC at x = 1
2
.
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Here is another continuity property of correspondences that’s important:

Definition: A correspondence f : X →→ Y is closed if it has a closed graph, i.e., if

Gr(f) is a closed subset of X × Y .

Remark: A correspondence f : X →→ Y has a closed graph if and only if it satisfies the

following condition: if {xn} and {yn} are sequences in X and Y such that yn ∈ f(xn) for

each n, and {xn} → x and {yn} → y, then y ∈ f(x).

Proof: The condition can be stated as follows: if {(xn, yn)} is a sequence in X×Y such

that (xn, yn) ∈ Gr(f) for each n and {(xn, yn)} → (x, y), then (x, y) ∈ Gr(f). ‖

The closed graph property is generally more intuitive than the UHC property, and there-

fore it’s usually easier to work with. Moreover, in many applications the target space Y

is compact, in which case any closed correspondence is UHC, as we’ll show momentarily.

Note that Examples 1 and 3 both have closed graphs and are UHC. Example 2 is not

UHC and its graph is not closed.

Theorem: If Y is compact, then any correspondence f : X →→ Y that has a closed

graph is UHC on X.

Proof: We assume that f has a closed graph but is not UHC at some x ∈ X, and we

will obtain a contradiction. Since f is not UHC at x, there is an open set V ⊆ Y such

that f(x) ⊆ V but for every open ball of the form B(x, 1/n) there is an xn ∈ B(x, 1/n)

such that f(xn) 6⊆ V — i.e., such that some yn ∈ f(xn) satisfies yn 6∈ V .

Since Y is compact, {yn} has a convergent subsequence, which we also write as {yn},
and we write y = lim yn. Since f has a closed graph, we have y ∈ f(x). Since y ∈ f(x) ⊆ V

and V is open, there is an ε > 0 such that B(y, ε) ⊆ V . Since yn 6∈ V for all n, we have

yn 6∈ B(y, ε) for all n. But then {yn} 6→ y, a contradiction. ‖

Example 4: f : [0, 1]→→ [0, 1] is defined by

f(x) =

{
[.3, .7] if x 5 1

2

{1
2
} if x > 1

2
.

See Figure 4. This correspondence has a closed graph (and is therefore UHC, since the

target space is compact), but it’s not LHC at x = 1
2
. .
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Example 5: f : R+ →→ R is defined by

f(x) =

{
{ 1
x
} if x > 0

{0} if x = 0.

See Figure 5. This correspondence is singleton-valued, and its unique selection is discon-

tinuous at x = 0, so it’s neither UHC nor LHC at x = 0. (You should be able to prove

this directly from the definitions of UHC and LHC.) However, it does have a closed graph.

But since its target space is R+, which is not compact, this is not inconsistent with the

above theorem. Instead, the example is a counterexample to demonstrate that compact-

ness cannot be dispensed with in the theorem: if Y is not compact, a correspondence with

a closed graph may not be UHC.

Figure 4 Figure 5

Exercise: Verify the claims made above about the examples’ properties.

The following example demonstrates that the converse of the above theorem is false: even

if Y is compact, a UHC correspondence need not have a closed graph.

Example 6: f : [0, 1]→→ [0, 1] is defined by f(x) = (.3, .7) for all x ∈ [0, 1].

This correspondence is continuous (both UHC and LHC), as every constant correspon-

dence is, and its target space is compact, but it does not have a closed graph.

Exercise: Verify that every constant correspondence is continuous.
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Just as the closed graph property is useful because it can be characterized in terms of

convergent sequences, there is a similar convergent-sequence characterization of lower

hemicontinuity that is often easier to use than the definition of LHC.

Theorem: A correspondence f : X →→ Y is LHC at x ∈ X if and only if for every

sequence {xn} → x and every y ∈ f(x), there is a sequence {yn} that satisfies both (1)

yn ∈ f(xn) for all n and (2) {yn} → y.

Proof: de la Fuente, p. 111.

Here are several useful facts about correspondences. The proofs are straightforward and

are good exercises for understanding correspondences and their continuity properties.

Theorem: If Y is compact and the correspondences f : X →→ Y and g : X →→ Y

both have closed graphs, then the sum f + g also has a closed graph, where f + g is the

correspondence defined by

(f + g)(x) := { y1 + y2 ∈ Y | y1 ∈ f(x) and y2 ∈ g(x) }.

Theorem: If Y and Z are compact and the correspondences f : X →→ Y and g : Y →→ Z

both have closed graphs, then the composition f ◦ g also has a closed graph, where f ◦ g
is the correspondence defined by

(f ◦ g)(x) := g(f(x)) = { z ∈ Z | ∃y ∈ Y : y ∈ f(x) & z ∈ g(y) }

=
⋃
{ g(y) | y ∈ f(x) }.

Theorem: If the correspondences f : X →→ Y and g : X →→ Y are both UHC and have

closed graphs, then the correspondence f ∩ g : X →→ Y is UHC, where f ∩ g is defined

by (f ∩ g)(x) := f(x) ∩ g(x).

Reference: The book Fixed Point Theorems with Applications to Economics and Game

Theory, by Kim Border, contains a detailed account of the continuity properties of cor-

respondences (in Chapter 11), as well as the Maximum Theorem (in Chapter 12). The

Maximum Theorem will be introduced below.
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Fixed Points of Correspondences

Definition: A fixed point of a correspondence f : X →→ X is an x∗ ∈ X for which

x∗ ∈ f(x∗).

The most commonly used generalization of Brouwer’s Theorem to correspondences is

Kakutani’s Fixed Point Theorem.

Kakutani’s Theorem: Let f : S →→ S be a correspondence. If S is nonempty, compact,

and convex, and if f is nonempty-valued, convex-valued, and has a closed graph, then f

has a fixed point.

When we say that f is nonempty-valued and convex-valued, we mean that f(x) is a

nonempty convex set for every x ∈ S.

Example 7: f : [0, 1]→→ [0, 1] is defined by

f(x) =


[.6, .8] if x < 1

2

[.2, .8] if x = 1
2

[.2, .4] if x > 1
2
.

This correspondence is convex-valued and has a closed graph, and it therefore has a fixed

point. Its unique fixed point is x∗ = 1
2
.

Example 8: f : [0, 1]→→ [0, 1] is defined by

f(x) =

{
{.7} if x < 1

2

[.2, .4] if x = 1
2
.

This correspondence has no fixed point. The correspondence is convex-valued but does

not have a closed graph: it’s discontinuous at x = 1
2
.

Example 9: f : [0, 1]→→ [0, 1] is defined by

f(x) =


[.6, .8] if x < 1

2

[.2, .4] ∪ [.6, .8] if x = 1
2

[.2, .4] if x > 1
2
.

This correspondence has no fixed point. The correspondence has a closed graph but is

not convex-valued: it’s convex-valued at every x except x = 1
2
.
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The Maximum Theorem

Economic models of individual behavior generally assume optimizing behavior. We typ-

ically use the classical Weierstrass Theorem (“a continuous real-valued function on a

compact set attains a maximum”) to infer that there is actually an optimizing action

available for the individual to choose. Is the individual’s behavior continuous? That is,

does the individual’s chosen action respond continuously to changes in his environment?

When we have a specific functional form for the objective function (e.g., a Cobb-Douglas

utility function), we can often obtain a closed-form expression for the behavioral function

and determine directly whether it’s continuous. Even when we can’t obtain a closed-

form behavioral function, if the objective function is differentiable we can generally apply

the Implicit Function Theorem to establish continuity (and even differentiability) of the

behavioral function.

The preceding paragraph implicitly assumed that the individual’s behavior is described

by a single-valued function — that the optimizing action is always unique. We now

have correspondences at our disposal, so we can deal as well with situations in which

the optimizing action is not unique — in which the behavioral function is actually a

correspondence. The Maximum Theorem is used pervasively in economics and game

theory to infer that a behavioral correspondence is UHC or has a closed graph.

In applications of the Maximum Theorem, the set X in the statement of the theorem below

is typically the action space; E is the set of possible environments (the parameter space);

the function u is the objective function; the correspondence ϕ describes how the set of

available actions depends upon the environment; and µ is the behavioral correspondence,

describing how the individual’s actions depend upon the environment he faces.

In demand theory, for example, X would be the consumption set (or a compact sub-

set of it); E would be the set of possible price-lists (and perhaps wealth/income levels);

u would be the consumer’s utility function; ϕ would be the correspondence that deter-

mines the budget set from the market prices; and µ would be the consumer’s demand

correspondence.
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The Maximum Theorem: Let X be a subset of Rl; let E be a subset of Rm; let

u : X × E → R be a continuous function; and let ϕ : E →→ X be a continuous and

compact-valued correspondence. Then the correspondence µ : E →→ X defined by

µ(e) = { x ∈ ϕ(e) |x maximizes u(·, e) on ϕ(e) }

is nonempty-valued, compact-valued, closed, and UHC, and the value function

v : E → R defined by v(e) = max
x∈ϕ(e)

u(x, e) is continuous.

Proof: Border, p. 64, or de la Fuente, p. 301.

Note that the domain of the objective function u includes not only actions (in the de-

mand theory application these are consumption bundles), but parameters as well (in the

demand application these are price-lists). This seems odd at first glance. There are three

observations to make about this:

(1) In the demand theory application we typically assume that u is constant with respect

to the parameters e ∈ E — the prices. So for this application a Maximum Theorem in

which u depends only upon consumption bundles in X would be just fine.

(2) Including the prices as arguments of u does, however, allow us to analyze consumers

whose utility depends upon prices as well as consumption levels.

(3) The theory of the firm is an example of an application where we need to have the

objective function u depend upon the parameters. In this application, the elements of X

are the firm’s feasible production plans, i.e., input-output combinations. The elements of

E are again price-lists. The objective function u is the firm’s profit function — and note

that profit does depend upon both the firm’s choice of production plan (in X) and the

market prices (in E). The correspondence ϕ describes how the available plans depend

upon prices — typically, this is assumed to be a constant correspondence in the theory

of the firm: the production plans available to the firm depend upon its technological

capabilities but not upon prices. And of course the correspondence µ describes how the

firm’s profit-maximizing choices of input and output levels depend upon the market prices

— the firm’s supply correspondence for outputs and its demand correspondence for inputs.
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