
An Application to Growth Theory

First let’s review the concepts of solution function and value function for a maximization

problem. Suppose we have the problem

max
x∈X

F (x, α) subject to G(x, β) 5 0, (P)

where α ∈ A and β ∈ B are parameters, and F : X × A → R and G : X × B → R . If for

each α ∈ A and β ∈ B the problem P has a unique solution, then we have the two functions

s(·) : A×B → X, the solution function, where s(α, β) is the solution of the problem

P for the parameter values α and β; and

v(·) : A × B → R, the value function, defined by v(α, β) := F (s(α, β), α), i.e.,

v(α, β) is the value of F at the solution s(α, β).

Now suppose we have an economy in which capital is used to produce output according to

the production function y = f(x), and assume that the output will be allocated between

consumption and investment — i.e., c + i 5 y. Suppose, furthermore, that the amount of

capital available tomorrow, x1, will be equal to the amount invested today — i.e., x1 = i0.

(We’re assuming, for simplicity, that today’s capital depreciates fully by the time tomorrow

arrives. We could instead assume that capital depreciates only at the rate δ — i.e., that

x1 = (1− δ)x0 + i0. But assuming that δ = 1 makes the analysis more transparent without

changing anything conceptually.) Finally, assume that we start off with a given amount of

capital, x0, today, and that we care only about the two periods t = 0 and t = 1 (i.e., “today”

and “tomorrow”): we evaluate consumption streams (c0, c1) according to a utility function

U(c0, c1). Thus, we have the following constrained maximization problem:

max
c0,c1,x1

U(c0, c1) subject to c0 + x1 5 f(x0) and c1 5 f(x1). (1)

It’s clear that a solution must satisfy both inequalities exactly (if U is increasing), so let’s

write the problem’s constraints as equations:

max
c0,c1,x1

U(c0, c1) subject to c0 + x1 = f(x0) and c1 = f(x1). (2)

Note that both c0 and c1 are determined by our choice of just the one variable x1 (or equiva-

lently, i0) — which is not surprising, since the problem has three decision variables and two

constraints.



Now suppose there are three periods instead of two: t = 0, 1, 2. We again start with a

given capital stock, x0, and now we choose the variables c0, c1, c2, x1, x2 subject to the three

constraints
c0 + x1 = f(x0) , c1 + x2 = f(x1) , and c2 = f(x2).

As before, the choice of the capital stocks x1 and x2 (or the investment levels i0 and i1)

determine the values of c0, c1, c2.

In fact, for any finite number of periods — say t = 0, 1, . . . , T — and any starting capital

stock x0 ∈ R+, we have a straightforward constrained maximization problem, to choose

x1, x2, . . . , xT to maximize U(c0, . . . , cT ), where the variables ct and xt satisfy the equations

ct + xt+1 = f(xt) for t = 0, 1, . . . , T − 1, and cT = f(xT ).

Notice, in particular, that the last period is different from all the preceding periods: in the

last period we don’t have to give up any consumption in order to leave some capital for the

future periods — i.e., to provide for consumption in future periods — because there are no

future periods.

But now let’s assume there will always be future periods — so there is no last period. We now

have an infinite horizon maximization problem, to choose a sequence x = (x1, x2, . . .) ∈ R∞
+

to maximize a utility function U(c0, c1, . . .) subject to the constraints

ct + xt+1 = f(xt) for t = 0, 1, 2, . . . , (3)

where x0 is the initial capital stock, which is given.

Let’s henceforth assume that the utility function is a sum of period-by-period utilities, dis-

counted at the rate β:

U(c0, c1, . . .) =
∞∑
t=0

βtu(ct). (4)

Notice that we can write the problem entirely in terms of the capital-stock decision variables

xt:

max
x∈R∞

+

Ũ(x1, x2, . . .) =
∞∑
t=0

βtu(f(xt)− xt+1)

(5)

subject to 0 5 xt+1 5 f(xt), t = 0, 1, 2, . . . .

Let’s assume, for now, that whatever is the level of the initial capital stock, x0 ∈ R+, the

problem (5) has a unique solution x̂ = (x̂1, x̂2, . . .) ∈ R∞
+ , which of course depends on x0.

Then we have both a solution function x̂(·) : R+ → R∞
+ and a value function v(·) : R+ → R:

x̂(x0) = (x̂1, x̂2, . . . ) ∈ R∞
+ and v(x0) = Ũ(x̂(x0)). (6)
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Notice that while we want to choose a plan x = (x1, x2, . . .) for the entire future, the only

part of the plan that we can actually implement today is the pair (c0, i0), or equivalently,

the capital stock x1 that will be carried forward to period t = 1. If we knew the value

function v(·) in (6), we could write today’s problem as a simple maximization problem with

two variables and one constraint:

max
c0,x1

[u(c0) + βv(x1)] subject to c0 + x1 = f(x0), (7)

because the problem we will face tomorrow is the same as today’s problem, but with today’s

capital stock x0 replaced by tomorrow’s capital stock, x1. And the value of the solution of

the problem (7) must be v(x0), so we have the equation

v(x0) = max
c0,x1

[u(c0) + βv(x1)] subject to c0 + x1 = f(x0), (8)

and this equation must hold for every x0 ∈ R+. We can rewrite (8) as follows, using the

constraint equation to replace the variable c0:

∀x0 ∈ R+ : v(x0) = max
x1

[u(f(x0)− x1) + βv(x1)] subject to 0 5 x1 5 f(x0). (9)

And finally, notice that we don’t really need the time subscripts: the equation in (9) must

hold at every period, for any capital stock x0 ∈ R+ with which we enter the period; and the

variable in the maximization problem does not have to have a subscript, it just has to be

distinguished from the variable x0. So we can rewrite (9) as follows:

∀x ∈ R+ : v(x) = max
z

[u(f(x)− z) + βv(z)] subject to 0 5 z 5 f(x). (10)

Unfortunately, we now have some bad news: we don’t have any guarantee that such a function

v(·) actually exists. Recall that we obtained (10) by saying “Let’s assume for now that the

problem (5) has a unique solution.” But we don’t actually know whether (5) has a solution.

On the other hand, if we knew that a function satisfying (10) does exist (and if it’s continuous

and u(·) is also continuous), then the Weierstrass Theorem guarantees that for any x ∈ R+ the

simple maximization problem in (10) will have a solution, say ẑ. Note that x is a parameter

in the maximization problem, so let’s write the solution function for the problem as ẑ = s(x).

Now, for any starting capital stock x0 we can determine the successive capital stocks that

solve the maximization problem in (10) by recursively applying the function s(·) :

x1 = s(x0), x2 = s(x1), x3 = s(x2), . . . . (11)

And then, under some fairly weak conditions, we can show that the sequence (x1, x2, . . .) is

actually a solution of our original problem in (5). So our goal now is simply to establish the

existence of a function v that satisfies (10).
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Let’s ignore, for the moment, the function v that appears on the left-hand side of (10), and

focus just on the v on the right-hand side. If that function is continuous (and if u and f

are continuous, as well), then the maximization problem in (10) will still have a solution for

every x ∈ R+. Therefore, the right-hand side of (10) defines a real-valued function on R+,

say ṽ, which is is the value function for the maximization problem:

∀x ∈ R+ : ṽ(x) = max
z

[u(f(x)− z) + βv(z)] subject to 0 5 z 5 f(x). (12)

Thus, (12) defines a transformation that transforms any continuous real function v into a

new real function ṽ. Later in the course we’ll develop a result called the Maximum Theorem,

which guarantees that this new function ṽ is also continuous. We can also impose conditions

which guarantee that both v and ṽ are bounded functions. Thus, we have a transformation

T : CB(R+)→ CB(R+), where CB(R+) is the set of all bounded continuous functions on R+,

which is a complete metric space under the sup-metric. Now, if we could show that T is a

contraction, then we would know that T has a fixed point, a function v ∈ CB(R+) for which

ṽ = v — i.e., a function v that does satisfy (10).

In fact, it’s straightforward to verify that T is a contraction, but we won’t do that here.

We’ll just note that the Contraction Mapping Theorem turns out to be exactly the tool we

need to solve the problem we started out with — to determine the optimal policy for growing

the capital stock and its associated consumption stream. We establish that for any x0 ∈ R+

there is an optimal solution (x̂1, x̂2, . . . ) to the problem (5), and that the solution has the

recursive structure in (11):

x̂1 = s(x0), x̂2 = s(x̂1), x̂3 = s(x̂2), . . . . (13)

Moreover, the method of successive approximations provides a means of numerically approx-

imating the solution: we can start with any arbitrary function v0 and recursively determine

a sequence of functions vt:

v1 = ṽ0 = T (v0), v2 = ṽ1 = T (v1), v3 = ṽ2 = T (v2), . . . , (14)

a sequence that has to converge (monotonically-in-distance!) to the unique function v that

satisfies (10). We can then determine the solution function s, or at least properties of s, by

straightforward application of Kuhn-Tucker/Lagrangean methods to the simple maximization

problem in (10).
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Notes:

(1) We said that we can write today’s problem as the simple maximization problem in (7),

using the value function v(·) to summarize the entire future value of arriving at tomorrow’s

date with a capital stock x1, and that we can do that because the problem we will face

tomorrow is the same as today’s problem, but with today’s value of the parameter, x0,

replaced by tomorrow’s value, x1. This fact is The Principle of Optimality, due to

Richard Bellman. While it’s extremely intuitive, it does have to be proved, which we don’t

do here.

(2) The functional equation (10), involving the simple maximization problem, is called the

Bellman Equation for the infinite-dimensional problem (5).
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