SECTION 1

Aﬁ?’ne Sets

Throughout this book, R denotes the real number system, and R" is the
j vector space of real n-tuples x = (&, ..., &,). Everything takes
ace in R™ unless otherwise specified. The inner product of two vectors
"and x* in R” is expressed by

X"y = &E 4+ 4
The same symbol A is used to denote an m X n real matrix 4 and the
orresponding linear transformation x — Ax from R"™ to R™. The transpose
aatrix and the corresponding adjoint linear transformation from R™
o R" are denoted by 4*, so that one has the identity

(Ax, y*) = (x, A*y*).

a symbol denoting a vector, * has no operational significance; all
ors are to be regarded as column vectors for purposes of matrix
aultiplication. Vector symbols involving * are used from time to time
merely to bring out the familiar duality between vectors considered as
oints and vectors considered as the coefficient n-tuples of linear functions.)
Ihe end of a proof is signalled by |.

1If x and y are different points in R", the set of points of the form

I =Dx+Ay=x+ Ay — x), AER,

S called the line through x and y. A subset M of R" is called an affine set
1 — Mx + Aye M for every xe M, y € M and A € R. (Synonyms for
ne set”” used by other authors are ““affine manifold,” “affine variety,”
near variety”” or “flat.””)

The empty set @ and the space R” itself are extreme examples of affine
Also covered by the definition is the case where M consists of a
olitary point. In general, an affine set has to contain, along with any
w0 different points, the entire line through those points. The intuitive
scture is that of an endless uncurved structure, like a line or a plane in

~ The formal geometry of affine sets may be developed from the theorems
of linear algebra about subspaces of R". The exact correspondence between
ine sets and subspaces is described in the two theorems which follow.
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THEOREM 1.1. The subspaces of R" are the affine sets which contain the
origin.
ProOF. Every subspace contains 0 and, being closed under addition and
scalar multiplication, is in particular an affine set.
Conversely, suppose M is an affine set containing 0. For any x € M
and 4 € R, we have
Ax=(1 -0+ Axe M,

so M is closed under scalar multiplication. Now, if x € M and y € M, we
have
Mx+y) =3+ 0—-dpeM,
and hence
x 4y = 20(x + y) € M.

Thus M is also closed under addition and is a subspace. |
For M = R" and a € R", the translate of M by a is defined to be the set

M+ a={x+a|xe M)

A translate of an affine set is another affine set, as is easily verified.

An affine set M is said to be parallel to an affine set L if M = L + a for
some a. Evidently “M is parallel to L” is an equivalence relation on the
collection of affine subsets of R”. Note that this definition of parallelism
is more restrictive than the everyday one, in that it does not include the
idea of a line being parallel to a plane. One has to speak of a line which is
parallel to another line within a given plane, and so forth. -

THEOREM 1.2. Each non-empty affine set M is parallel to a unique
subspace L. This L is given by

L=M-M={x—y

xeM,ye M}

PrROOF. Let us show first that M cannot be parallel to two different
subspaces. Subspaces L, and L, parallel to M would be parallel to each
other, so that L, = L, + a for some a. Since 0 € L,, we would then have
—ae€L,, and hence ae L;. But then L, > L, + a= L,. By a similar
argument L, > L,, so L, = L,. This establishes the uniqueness. Now
observe that, for any ye M, M — y = M + (—y) is a translate of M
containing 0. By Theorem 1.1 and what we have just proved, this affine
set must be the unique subspace L parallel to M. Since L = M — y no
matter which y € M is chosen, we actually have L =M — M. |

The dimension of a non-empty affine set is defined as the dimension of
the subspace parallel to it. (The dimension of @ is —1 by convention.)
Naturally, affine sets of dimension 0, 1 and 2 are called points, lines and
planes. respectively. An (n — 1)-dimensional affine set in R" is called a

LM"‘\ A -
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typerplane. Hyperplanes are very important, because they play a role dual
“o the role of points in n-dimensional geometry.

Hyperplanes and other affine sets may be represented by linear functions
2nd linear equations. It is easy to deduce this from the theory of orthog-
onality in R". Recall that, by definition, x | y means (x, y) = 0. Given a
subspace L of R", the set of vectors x such that x | L, i.e. x | y for
every y € L, is called the orthogonal complement of L, denoted L1. It is
another subspace, of course, and

dim L + dim ' = n.

The orthogonal complement (L4)L of L+ isin turn L. If b,, ..., b,, is a
Basis for L, then x | L is equivalent to the condition that x | by v s
- x 1 b, In particular, the (n — 1)-dimensional subspaces of R" are the
orthogonal complements of the one-dimensional subspaces, which are the
subspaces L having a basis consisting of a single non-zero vector b (unique
- Up to a non-zero scalar multiple). Thus the (n — 1)-dimensional subspaces
are the sets of the form {x | x L b}, where b 5 0. The hyperplanes are the
iranslates of these. But

{X|xLb+a={x+a|lx,b=0}

={|y—ab =0 ={|yb =4,

“whero f = (a, b). This leads to the following characterization of hyper-
planes. )

THEOREM 1.3.  Given f§ € R and a non-zero b € R, the set
H={x|(x,b)=p

5 a hyperplane in R". Moreover, every hyperplane may be represented in
shis way, with b and f§ unique up to a common non-zero multiple.

In Theorem 1.3, the vector b is called a normal to the hyperplane H.
Every other normal to H is either a positive or a negative scalar multiple of
5. A good interpretation of this is that every hyperplane has “two sides,”
like one’s picture of a line in R? or a plane in RS, Note that a plane in R*
would not have “two sides,” any more than a line in R? has.

The next theorem characterizes the affine subsets of R™ as the solution
SETs to systems of simultaneous linear equations in n variables.

THEOREM 1.4.  Given b € R™ and an m X n real matrix B, the set

M = {x e R"| Bx = b}

i an affine set in R". Moreover, every affine set may be represented in this
way.




|

6 1: BASIC CONCEPTS

PrOOF. If x€ M, ye M and A € R, then for z = (1 — A)x + Ay one
has
Bz=(1—2)Bx+ABy=(1—MNb+ =0,

so z € M. Thus the given M is affine.

On the other hand, starting with an arbitrary non-empty affine set M
other than R" itself, let L be the subspace parallel to M. Let by, .. ., b,
be a basis for L+-. Then

L= ={x|x Lby,....,x Lby}
= (x| by =0, i=1,...,m}={x|Bx=0}

where B is the m X »n matrix whose rows are by, ..., b,,- Since M is
parallel to L, there exists an a € R such that

M=L+a={x|B(x—a)=0}={x|Bx=b},

where b = Ba. (The affine sets R and @ can be represented in the form in
the theorem by taking B to be the m X n zero matrix, say, with b =0
in the case of R™ and b 5 0 in the case of 0.) ||

Observe that in Theorem 1.4 one has

M={x|<x,bi>=ﬁi,i= 1,...,m} =N H,
where b, is the ith row of B, f; is the ith component of b, and

H; = {x ‘ (x, by = B}

Each H, is a hyperplane (b; # 0), or the empty set (b; = 0, B; # 0), or
R" (b; = 0, B; = 0). The empty set may itself be regarded as the inter-
section of two different parallel hyperplanes, while R* may be regarded
as the intersection of the empty collection of hyperplanes of R". Thus:

COROLLARY 1.4.1. Every affine subset of R* is an intersection of a
finite collection of hyperplanes.

The affine set M in Theorem 1.4 can be expressed in terms of the vectors
b}, ..., b, which form the columns of B by

Obviously, the intersection of an arbitrary collection of affine sets is
again affine. Therefore, given any § < R" there exists a unique smallest
affine set containing S (namely, the intersection of the collection of affine
sets M such that M > S). This set is called the affine hull of S and is
denoted by aff S. It can be proved, as an exercise, that aff S consists of all
the vectors of the form Ay + -+ + A%y, such that x;€S and
Rotamat A =1

A set of m + 1 points by, by, . . -, b,, is said to be affinely independent
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T aff {by, by, ..., b,} is m-dimensional. Of course

aff {by, bs, ..., b,} = L + by,
-here
L=aff{0,b, — by, ..., b, — by

8y Theorem 1.1, L is the same as the smallest subspace containing b, —
S - - ., b, — by. Its dimension is m if and only if these vectors are linearly
smdependent. Thus by, by, ..., b,, are affinely independent if and only if
— by, ..., b,, — b, are linearly independent.
All the facts about linear independence can be applied to affine
s=dependence in the obvious way. For instance, any affinely independent
%t of m + 1 points in R" can be enlarged to an affinely independent set
% + 1 points. An m-dimensional affine set M can be expressed as the
ane hull of m 4 1 points (translate the points which correspond to a
Sasis of the subspace parallel to M).

Note that, if M = aff {by, by, ..., b,,}, the vectors in the subspace L

arallel to M are the linear combinations of b, — by, . .., b,, — b,. The
wectors in M are therefore those expressible in the form

X = ;"1(b1 - b()) q A0 AE }'m(bm S b()) + bO’
in the form .
B Abo + Aby + ot Ab, A E A A, =1,

The coefficients in such an expression of x are unique if and only if b,,
& -. ., b, are aflinely independent. In that event, 2y, 4, ..., 2, as
parameters, define what is called a barycentric coordinate system for M.
A single-valued mapping 7:x — Tx from R" to R™ is called an affine
wansformation if
T((1 — Dx + Ap) = (L — HTx + ATy

every x and y in R" and 1 € R.

THEOREM 1.5.  The affine transformations from R" to R™ are the mappings
of the form Tx = Ax + a, where A is a linear transformation and a € R™.

Proor. If T is affine, let a = 70 and Ax = Tx — a. Then A4 is an
=Sne transformation with 40 = 0. A simple argument resembling the
= in Theorem 1.1 shows that A is actually linear.

Conversely, if Tx = Ax + a where 4 is linear, one has

T((L — Dx + Ap) = (1 — DAdx + 24y + a = (1 — H)Tx + ATy.

as 7 is affine. ||
The inverse of an affine transformation, if it exists, is affine.




