2 An Overview

In this chapter we preview the recursive methods of analysis to be devel-
oped in detail in the rest of the book. This material falls into three broad
parts, and the remainder of the book is structured accordingly. Part II
deals with methods for solving deterministic optimization problems, Part
[1I with the extension of these methods to problems that include sto-
chastic shocks, and Part IV with ways of using solutions of either type
within a competitive equilibrium framework.

To make this preview as concrete as possible, we examine these three
sets of issues by looking at a specific example, a one-sector model of
economic growth. Our goal is not to provide a substantive treatment of
growth theory but to illustrate the types of arguments and results that
are developed in the later chapters of the book—arguments that can be
applied to a wide variety of problems. A few of these problems were
mentioned in Chapter 1, and many more will be discussed in detail in
Chapters 5, 10, 13, 16, 17, and 18, all of which are devoted exclusively to
substantive applications. With that said, in this chapter we focus exclu-
sively on the example of economic growth.

In the next three sections we consider resource allocation in an econ-
omy composed of many identical, infinitely lived households. In each
period ¢ there is a single good, y, that is produced using two inputs:
capital, %, in place at the beginning of the period, and labor, n;. A
production function relates output to inputs, y, = F (k, n). In each pe-
riod current output must be divided between current consumption, ¢,
and gross investment, i

1) o+ =y = Fk,n)
This consumption-savings decision is the only allocation decision the

economy must make. Capital is assumed to depreciate at a constant rate

8

2.1 | Deterministic Growth
0 < & < 1, so capital is related to gross investment by
2) kivy = (1 - S)kz + i,

Labor is taken to be supplied inelastically, so n, = 1, all ¢. Finally, prefer

ences over consumption, common to all households, are taken to be ¢
the form

©

®  2pUE,
pis ,
where 0 < 8 < 1 is a discount factor.

In‘Sections 2.1 and 2.2 we study the problem of optimal growth
Spe.c1ﬁcally, in Section 2.1 we examine the problem of maximizing (3
sub‘]Cjct to (1) and (2), given an initial capital stock ko. In Section 2.2 wi
modify this planning problem to include exogenous random shocks tc
the. technology in (1), in this case taking the preferences of household
over .ram.iom consumption sequences to be the expected value of thi
funFtlon in (3). In Section 2.3 we return to the deterministic model. W
b'egm by characterizing the paths for consumption and capital accumula
tion that would arise in a competitive market economy composed o
many households, each with the preferences in (3), and many firms, eact
with the technology in (1) and (2). We then consider the relatio’nshi;
betwan the competitive equilibrium allocation and the solution to the
planpmg problem found earlier. We conclude in Section 2.4 with a more
detailed overview of the remainder of the book, discussing briefly the
content of each of the later chapters:

2.1 A Deterministic Model of Optimal Growth

In this chtion we study the problem of optimal growth when there is nc
unce2rtamty. Assume that the production function is y, = F (k,, n,), wher
F: R — Ry is continuously differentiable, strictly increasing, homoge
neous of degree one, and strictly quasi-concave, with

F(0,n) =0, Fyk,n)>0, Fuk,n)>0, allk,n>0;

EEI(}Fk(k: 1) = o, E_{EFk(k: 1) = 0.
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Assume that the size of the population is constant over time and nor-
malize the size of the available labor force to unity. Then actual labor
supply must satisfy

(la) 0=<n =1, allt

Assume that capital decays at the fixed rate 0 < & = 1. Then con-
sumption ¢; gross investment i, = ki1 — (1 — 8k, and output y; =
F (k, n;) must satisfy the feasibility constraint

(1b) ¢+ ko1 — (1 — Ok = F (k, ny), allt.

Assume that all of the households in this economy have identical pref-
erences over intertemporal consumption sequences. These common
preferences take the additively separable form

@) w(co, €1y - - -) = ;B‘U(ct),

where the discount factor is 0 < 8 < 1, and where the current-period
utility function U: R, — R is bounded, continuously differentiable,
strictly increasing, and strictly concave, with limeo U'(c) = ». House-
holds do not value leisure.

Now consider the problem faced by a benevolent social planner, one
whose objective is to maximize (2) by choosing sequences {(co, ke+1s M) Y05
subject to the feasibility constraints in (1), given ko > 0. Two features of
any optimum are apparent. First, it is clear that output will not be
wasted. That is, (1b) will hold with equality for all ¢, and we can use it to
eliminate ¢, from (2). Second, since leisure is not valued and the marginal
product of labor is always positive, it is clear that an optimum requires
n, = 1, all . Hence k, and jy represent both capital and output per
worker and capital and output in total. It is therefore convenient to
define f(k) = F(k, 1) + (1 — 8)kto be the total supply of goods available
per worker, including undepreciated capital, when beginning-of-period
capital is &.

Exercise 2.1 Show that the assumptions on F above imply that
f: Ry« = Ry is continuously differentiable, strictly increasing, and strictly
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concave, with
f© =0, f'() >0, Limf'(h) =, limf'k) =1-3.

The planning problem can then be written as

3) max D, BU[f(k) — ki1

(ks 1limo =0
(4) s.t. 0 = k¢+1 Sf(kt), t= 0, cee s

ko> 0 given.

Although ultimately we are interested in the case where the planning
horizon is infinite, it is instructive to begin with the (much easier!) prob-
lem of a finite horizon. If the horizon in (3) were a finite value T instead
of infinity, then (3)—(4) would be an entirely standard concave program-
ming problem. With a finite horizon, the set of sequences {k.+ Jeo satisfy-
ing (4) is a closed, bounded, and convex subset of RT*!, and the objective
function (3) is continuous and strictly concave. Hence there is exactly
one solution, and it is completely characterized by the Kuhn-Tucker
conditions.

To obtain these conditions note that since f(0) = 0 and U'(0) = », itis
clear that the inequality constraints in (4) do not bind except for kriy,
and it is also clear that kr+; = 0. Hence the solution satisfies the first-
order and boundary conditions

) Bf k)U'[f k) = keri] = U'[f k) — k), ¢=1,2,...,T;

6) kre1 =10, ko> 0 given.

Equation (5) is a second-order difference equation in %; hence it has a
two-parameter family of solutions. The unique optimum for the maxi-
mization problem of interest is the one solution in this family that in
addition satisfies the two boundary conditions in (6). The following exer-
cise illustrates how (5)—(6) can be used to solve for the optimum in a
particular example.
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Exercise 2.2 Let f(k) = k0 <a < 1, and let U(c) = In(c). (No,
this does not fit all of the assumptions we placed on fand U above, but go
anyway.
ah:.a (i'Vritye (5); )for this case and use the change of variable z, = k/kY to
convert the result into a first-order difference equation in z. Plot z41
against z, and plot the 45° line on the same diagram. ' . '
b. The boundary condition (6) implies that zr+1 = 0. Using this condi-
tion, show that the unique solution is

l_a)T—tH _
z,=aB-l—t%[%:ﬁ;+—2, t=1,2,..., T+ 1L

c. Check that the path for capital

1= (@@ .« ,_
(7 k"”l:aﬁT:_(_aW ¢, t=0,1,...,T,

given ko, satisfies (5)—(6).

Now consider the infinite-horizon version of the planning pro})lem in
Exercise 2.2. Note that if T is large, then the coefficient of k.?‘ in (7) is
essentially constant at o for a very long time. For tht? s?luuon to the
infinite-horizon problem, can we not simply take the ll.rmt of the solu-
tions in (7) as T approaches infinity? After all, we are dlscu531.ng h.ouse-
holds that discount the future at a geometric rate! Taking the limit in (7),

we find that
(8) kH.] = aﬁkf‘, t= 0, 1,....

In fact, this conjecture is correct: the limit of the sqlutio.ns for_ the
finite-horizon problems is the unique solution to the 1f1ﬁmte—hf)rlzon
problém. This is true both for the parametric exarr.lple. in Exercise 2.2
and for the more generally posed problem. But proving it m\if)lves”estab—
lishing the legitimacy of interchanging the operators “max and
“limy"; and doing this is more challenging than one fmght guess.

Instead we will pursue a different approach. Equatlorlx_j_:,(?S) suggests
another conjecture: that for the infinite-horizon problem in (3)-(4), for
any U and f, the solution takes the form

9) ki1 = g(kt), t=0,1,...,
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where g Ry — Ris a fixed savings function. Our intuition suggests that
this must be so: since the planning problem takes the same form every
period, with only the beginning-of-period capital stock changing from
one period to the next, what else but k, could influence the choice of k4,
and ¢;? Unfortunately, Exercise 2.2 does not offer any help in pursuing
this conjecture. The change of variable exploited there is obviously spe-
cific to the particular functional forms assumed, and a glance at (5)
confirms that no similar method is generally applicable.

The strategy we will use to pursue this idea involves ignoring (5) and
(6) altogether and starting afresh. Although we stated this problem as
one of choosing infinite sequences {(c; k:.+1)}izo for consumption and
capital, the problem that in fact faces the planner in period ¢ = 0 is that
of choosing today’s consumption, ¢y, and tomorrow’s beginning-of-
period capital, £;, and nothing else. The rest can wait until tomorrow. If
we knew the planner’s preferences over these two goods, we could sim-
ply maximize the appropriate function of (co, k)) over the opportunity
set defined by (1b), given ko. But what are the planner’s preferences over
current consumption and next period’s capital?

Suppose that (83)—(4) had already been solved for all possible values of
ko. Then we could define a function v: Ry — R by taking v(kg) to be the
value of the maximized objective function (3), for each &, = 0. A func-
tion of this sort is called a value function. With v so defined, v(k;) would
give the value of the utility from period 1 on that could be obtained with
a beginning-of-period capital stock ki, and Bu(k;) would be the value of
this utility discounted back to period 0. Then in terms of this value
function v, the planner’s problem in period 0 would be

(10) max [U(co) + Bu(ki)]

sit. co + ki = f(ko),

co, k1 =0, k>0 given.

If the function v were known, we could use (10) to define a function g:
R: — R, as follows: for each kg = 0, let k&, = g(ko) and co = f (ko) — glko)
be the values that attain the maximum in (10). With g so defined, (9)
would completely describe the dynamics of capital accumulation from
any given initial stock k.

We do not at this point “know” v, but we have defined it as the maxi-
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mized bbjective function for the problem in (3)—(4). Thus, if solving (IQ)
provides the solution for that problem, then v(ko) must be the maxi-
mized objective function for (10) as well. That is, v must satisfy

(ko) = max {U[f(ko) — kil + Bu(k)}

0=ky<f (ko)

where, as before, we have used the fact that goods will not be wasted.

Notice that when the problem is looked at in this recursive way, the
time subscripts have become a nuisance: we do not care what the date
is. We can rewrite the problem facing a planner with current capital
stock & as

an o) = max {U[f() =]+ BoO)-
O=y=<f(k

This one equation in the unknown function v is called a functional equa-
tion, and we will see later that it is a very tractable mathematical object.
The study of dynamic optimization problems through the analysis of
such functional equations is called dynamic programming.

If we knew that the function v was differentiable and that the maxi-
mizing value of y—call it g(k)—was interior, then the first-order and

envelope conditions for (11) would be
U'[f(k) — g(k)] = Bv'[g(k)), and
v'(k) = f'(RU'[f(R) — g(k)],

respectively. The first of these conditions equates the marg.inal.utility of
consuming current output to the marginal utility of allocating:it to capi-
tal and enjoying augmented consumption next period. The second con-
dition states that the marginal value of current capital, in terms of tatal
discounted utility, is given by the marginal utility of using the cap%tal in
current production and allocating its return to current consumption.

Exercise2.3 We conjectured that the path for capital given by (8)
was optimal for the infinite-horizon planning problq;xg,ﬁ for the func-
tional forms of Exercise 2.2. '

a. Use this conjecture to calculate v by evaluating (2) along the con-
sumption path associated with the path for capital given by (8).

[E—
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b. Verify that this function v satisfies (11).
c. Is this a proof that (8) gives the optimal policy for this case? What
would be needed to make it into one?

Suppose we have established the existence of an optimal savings policy
g either by analyzing conditions (5)—(6) or by analyzing the functional
equation (11). What can we do with this information? For the particular
parametric example in Exercises 2.2 and 2.3, we can solve for g with
pencil-and-paper methods. We can then use the resulting difference
equation (8) to compute the optimal sequence of capital stocks {k}. This
example is a carefully chosen exception: for most other parametric ex-
amples, it is not possible to obtain an explicit analytical solution for the
savings function g. In such cases a numerical approach can be used to
compute explicit solutions. When all parameters are specified numeri-
cally, it is possible to use an algorithm based on (11) to obtain an approxi-
mation to g. Then {k} can be computed using (9), given any initial
value k.

In addition, there are often qualitative features of the savings function
g, and hence of the capital paths generated by (9), that hold under a very
wide range of assumptions on f and U. Specifically, we can use either
(5)—(6) or the first-order and envelope conditions for (11), together with
assumptions on U and f, to characterize the optimal savings function g.
We can then, in turn, use the properties of g so established to character-
ize solutions {k} to (9). The following exercise illustrates the second of
these steps.

Exercise 2.4 a. Let fbe as specified in Exercise 2.1, and suppose
that the optimal savings function g is characterized by a constant savings
rate, g(k) = sf(k), all k, where s > 0. Plot g, and on the same diagram
plot the 45° line. The points at which g(k) = k are called the stationary
solutions, steady states, rest points, or fixed points of g. Prove that there is
exactly one positive stationary point k*.

b. Use the diagram to show that if kg > 0, then the sequence {k} given
by (9) converges to k* as t — . That is, let {k}i=o be a sequence satisfying
(9), given some ko = 0. Prove that lim,.« k, = k*, for any ko > 0. Show
that this convergence is monotonic. Can it occur in a finite number of
periods?

This exercise contains most of the information that can be established
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about the qualitative behavior of a sequence generated by a deterministic
dynamic model. The stationary points have been located and character-
ized, their stability properties established, and the motion of the system
has been described qualitatively for all possible initial positions. We take
this example as a kind of image of what one might hope to establish for
more complicated models, or as a source of reasonable conjectures. (In-
formation about the rate of convergence to the steady state k*, for k, near
k*, can be obtained by taking a linear approximation to g in a neighbor-
hood of k*. Alternatively, numerical simulations can be used to study the
rate of convergence over any range of interest.)

From the discussion above, we conclude that a fruitful way of analyz-
ing a stationary, infinite-horizon optimization problem like the one in
(3)—(4) is by examining the associated functional equation (11) for this
example—and the difference equation (9) involving the associated pol-
icy function. Several steps are involved in carrying out this analysis.

First we need to be sure that the solution(s) to a problem posed in
terms of infinite sequences are also the solution(s) to the related func-
tional equation. That is, we need to show that by using the functional
equation we have not changed the problem. Then we must develop tools
for studying equations like (11). We must establish the existence and
uniqueness of a value function v satisfying the functional equation and,
where possible, to develop qualitative properties of v. We also need to
establish properties of the associated policy function g. Finally we must
show how qualitative properties of g are translated into properties of the
sequences generated by g.

Since a wide variety of problems from very different substantive areas
of economics all have this same mathematical structure, we want to de-
velop these results in a way that is widely applicable. Doing this is the task
of Part IL.

2.2 A Stochastic Model of Optimal Growth

The deterministic model of optimal growth discussed above has a variety
of stochastic counterparts, corresponding to different assumptions
about the nature of the uncertainty. In this section we consider a model
in which the uncertainty affects the technology only, and does so in a
specific way.

Assume that output is given by y, = zf (k) where {z} is a sequence of
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independently and identically distributed (i.i.d.) random variables, and f
is defined as it was in the last section. The shocks may be thought of as
arising from crop failures, technological breakthroughs, and so on. The
feasibility constraints for the economy are then

1) kv + o = zf(k), ¢, ke =0, ally, all {z}.

Assume that the households in this economy rank stochastic consump-
tion sequences according to the expected utility they deliver, where their
underlying (common) utility function takes the same additively separa-
ble form as before:

2) E[ulco, c1, -.. )] = E [2 B‘U(c,)].

t=0

Here E(-) denotes expected value with respect to the probability distribu-
tion of the random variables {c/}ro.

Now consider the problem facing a benevolent social planner in this
stochastic environment. As before, his objective is to maximize the objec-
tive function in (2) subject to the constraints in (1). Before proceeding,
we need to be clear about the timing of information, actions, and deci-
sions, about the objects of choice for the planner, and about the distribu-
tion of the random variables {c,}/=o-

Assume that the timing of information and actions in each period is as
follows. At the beginning of period ¢ the current value z of the exoge-
nous shock is realized. Thus, the pair (k, z), and hence the value of total
output zf (k;), are known when consumption ¢, takes place and end-of-
period capital k4 is accumulated: The pair (k, z) is called the state of the
economy at date .

As we did in the deterministic case, we can think of the planner in
period 0 as choosing, in addition to the pair (co, £1), an infinite sequence
{(cy, k+1)¥e1 describing all future consumption and capital pairs. In the
stochastic case, however, this is not a sequence of numbers but a se-
quence of contingency plans, one for each period. Specifically, consump-
tion ¢, and end-of-period capital %+ in each period t =1, 2, ... are
contingent on the realizations of the shocks zj, z, . . . , z. This sequence
of realizations is information that is available when the decision is being
carried out but is unknown in period 0 when the decision is being made.



