3 Mathematical Preliminaries

In Chapter 2 the optimal growth problem

©

max D, BU(c)

(e kyy Pl =0
s.t. ¢ + kH-] Sf(kt),
k1 =0, t=0,1,...,

given ko,

was seen to lead to the functional equation

) u(k) = max [Ue) + Br(y)]

st c+y=f(h),
¢, y=0.

The purpose of this chapter and the next is to show precisely the rela-
tionship between these two problems and others like them and to de-
velop the mathematical methods that have proved useful in studying the
latter. In Section 2.1 we argued in an informal way that the solutions to
the two problems should be closely connected, and this argument will be
made rigorous later. In the rest of this introduction we consider alterna-
tive methods for finding solutions to (1), outline the one to be pursued,
and describe the mathematical issues it raises. In the remaining sections
of the chapter we deal with these issues in turn. We draw upon this
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material extensively in Chapter 4, where functional equations like (1) are
analyzed.

In (1) the functions U and f are given—they take specific forms
known to us—and the value function v is unknown. Our task is to
prove the existence and uniqueness of a function v satisfying (1) and to
deduce its properties, given those of U and f. The classical (nineteenth-
century) approach to this problem was the method of successive ap-
proximations, and it works in the following very commonsensical way.
Begin by taking an initial guess that a specific function, call it v,
satisfies (1). Then define a new function, v;, by

2) vi(k) = [max {ULf k) — 3] + Boo(y)}-

If it should happen that v (k) = vo(k), for all £ = 0, then clearly v is a
solution to (1). Lucky guessing (cf. Exercise 2.3) is one way to establish
the existence of a function satisfying (1), but it is notoriously unreliable.
The method of successive approximations proceeds in a more systematic
way.

Suppose, as is usually the case, that v, # vy. Then use v; as a new
guess and define the sequence of functions {v,} recursively by

3) Une1(k) = max {U[f(k) —y] + Bu(p)}, n=0,1,2,....
0=y=f(k)

The hope behind this iterative process is that as n increases, the succes-
sive approximations v, get closer to a function v that actually satisfies (1).
That is, the hope is that the limit of the sequence {v,} is a solution v.
Moreover; if it can be shown that lim, .« v, is the same for any initial
guess vo, then it will follow that this limit is the only function satisfying
(1). (Why?)

Is there any reason to hope for success in- this analytical strategy?
Recall that our reason for being interested in (1) is to use it to locate the
optimal capital accumulation policy for a one-sector economy. Suppose
we begin by choosing any feasible capital accumulation policy, that is,
any function go satisfying 0 = go(k) = f(k), all k = 0. [An example is the
policy of saving a constant fraction of income: go(k) = 6f (k), where 0 <
6 < 1.] The lifetime utility yielded by this policy, as a function of the
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initial capital stock kg, is

wolko) = 20 BULf (k) — golk)],

where
kir = gotk),t=0,1,2,....
The following exercise develops a result about (g, wo) that is used later.

Exercise 3.1 Show that
wo(k) = U[f (k) — go(R)] + Bwolgo(k)], all k = 0.

If t.he utility from the policy g is used as the initial guess for a value
function—that is, if vp = wy—then (2) is the problem facing a planner
who can choose capital accumulation optimally for one period but must
f.ollow the policy gy in all subsequent periods. Thus v,(k) is the level of
lifetime utility attained, and the maximizing value of y—call it gy(k)—is
the optimal level for end-of-period capital. Both v; and g, are functions
of beginning-of-period capital &.

Notice that since go(k) is a feasible choice in the first period, the plan-
ner will do no worse than he would by following the policy g from the
beginning, and in general he will be able to do better. That is, for any
feasible policy go and associated initial value function vy,

“) v(k) = max ULfR) — 3] + Bro(y)}

= {U[f (k) — go(k)] + Buolgo(k)]}
= Uo(k)r

where the last line follows from Exercise 3.1.

' Now suppose the planner has the option of choosing capital accumula-
tion optimally for two periods but must follow the policy g, thereafter. If
9 is his choice for end-of-period capital in the first period, then from the
second period on the best he can do is to choose g;(y) for end-of-period
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capital and enjoy total utility vi(y). His problem ir‘1 the first period .is t.hus
max'[U(c) + Bui(y)], subject to the constraints in (1). The max1mlzef1
value of this objective function was defined, in (3), as vq(k). Hence it

follows from (4) that

va(k) = max {ULf(®) — 3] + Bu(y)}
= max {ULf (k) — y]1 + Buo(y)}

OSyS

1

'Ul(k).

Continuing in this way, one establi§hes by im‘iucti'on that v,,:,:l ‘gk) 32)
va(k), allk,n=0,1,2,... . The successive approxxmz}tlons de'ﬁfllf: in (
are improvements, reflecting the fact that plflnnlng flexibi 11(ty over
longer and longer finite horizons offers new options without taking a;ln);
other options away. Consequently it seems réasonable to suppos;e t a
the sequence of functions {v,} defined in 3) mlght.com'/erge to a solu b1on
v to (1). That is, the method of successive apprgmmauons seems to be a
reasonable way to locate and characterize solutions. .

This method can be described in a somewhat (i'lfferffnt and much
more convenient language. As we showed in the ‘dlSCUSSIOI’? abo?/e, for
any function w: Ry — R, we can define a new function—call it Tw: Ry —

R—by

= -y + :
6 (k) = max {ULfE) =]+ Buly)

When we use this notation, the method of successive approximations
amounts to choosing a function v and studying the‘ sequence {v,} dt?-
fined by vp41 = Tvn, 0 = 0,1,2,....The gqal then'1§ to show thlat this
sequence converges and that the limit function v s‘ansﬁes (1. A tertzaé
tively, we can simply view the operator T as a mapping Ifrom some se :
of functions into itself: T: C — C. In this notation s‘olvmg (N is equiva

lent to locating a fixed point of the mapping T, that is, f\{ncthn v € g
satisfying v = Tv, and the metl;od qf successive approxxmaétil._o;ﬁns is viewe

nstruct this fixed point. -

K ';(;N :t)llx(;(; ((:)(;)erators T like ther;ne defined in (5), we need to draw‘ on
several basic mathematical results. To show that T maps an appropriate
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space C of functions into itself, we must decide what spaces of functions
are suitable for carrying out our analysis. In general we want to limit
attention to continuous functions. This choice raises the issue of
whether, given a continuous function w, the function Tw defined by (5) is
also continuous. Finally, we need a fixed-point theorem that applies to
operators like T on the space C we have selected. The rest of the chapter

. deals with these issues.

In Section 3.1 we review the basic facts about metric spaces and
normed vector spaces and define the space C that will be used repeatedly
later. In Section 3.2 we prove the Contraction Mapping Theorem, a fixed-
point theorem of vast usefulness. In Section 3.3 we review the main facts
we will need about functions, like Tw above, that are defined by maximi-
zation problems.

3.1 Metric Spaces and Normed Vector Spaces

The preceding section motivates the study of certain functional equa-
tions as a means of finding solutions to problems posed in terms of
infinite sequences. To pursue the study of these problems, as we will in
Chapter 4, we need to talk about infinite sequences {x}, of states, about
candidates for the value function v, and about the convergence of se-
quences of various sorts. To do this, we will find it convenient to think of
both infinite sequences and certain classes of functions as elements of
infinite-dimensional normed vector spaces. Accordingly, we begin here
with the definitions of vector spaces, metric spaces, and normed vector
spaces. We then discuss the notions of convergence and Cauchy conver-
gence, and define the notion of completeness for a metric space. Theo-
rem 3.1 then establishes that the space of bounded, continuous, real-
valued functions on a set X C R is complete.
We begin with the definition of a vector space.

DEFINITION A (real) vector space X is a set of elements (vectors) together
with two operations, addition and scalar multiplication. For any two vectors
x,y € X, addition gives a vector x + y € X; and for any vector x € X and any
real number a € R, scalar multiplication gives a vector ax € X. These opera-
tions obey the usual algebraic laws; that is, forallx, y,2€ X, and o, B8 € R:
a x+ty=y+ux;
b. (x+y) +z=x+(y+ 2),
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c. a(x+y) =axt ay;

d. (a + B)x = ax + Bx; and

e. (aB)x = o(Bx). . .
Moreover, there is a zero vector 6 € X that has the following properties:

fox+0=x and

g Ox=206.
Finally,
h. Ix = x.

The adjective “real” simply indicates that scalar multiplication is defined
taking the real numbers, not elements of the cor{lple)f plane or some
other set, as scalars. All of the vector spaces used in this book are real,
and the adjective will not be repeated. Impo?ta'mt features of a vector
space are that it has a “zero” element and that it is closed }1nder addition
and scalar multiplication. Vector spaces are also called linear spaces.

Exercise 3.2 Show that the following are vector spaces:
a. any finite-dimensional Euclidean space RY ,
b. the set X = {x € R% x = az, some a € R}, where z € R%;
c. the set X consisting of all infinite sequences (%o, %1, X2, - - ), where
x; € R, all ¢;
d. the set of all continuous functions on the interval [a, b].
Show that the following are not vector spaces:
e. the unit circle in R?;
f. the set of all integers, I = {..., =1, 0,+1,...}5
g. the set of all nonnegative functions on [a, b].

To discuss convergence in a vector space or in any othfer space, we
need to have the notion of distance. The notion of distance in Euclidean
space is generalized in the abstract notion of 'a metric, a .funcuon dejﬁned
on any two elements in a set the value of which has an interpretation as

the distance between them.

DEFINITION A metric space is a set S, together with a metric (distance
function) p: S X S — R, such that for all %, ) 2 € S:

a. p(x, y) = 0, with equality if and only ifx=y;

b. p(x, y) = p(y, x); and

c. p(x, 2) = p(x,y) + p(y; 2
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The definition of a metric thus abstracts the four basic properties of
Euclidean distance: the distance between distinct points is strictly posi-
tive; the distance from a point to itself is zero; distance is symmetric; and
the triangle inequality holds.

Exercise 3.3 Show that the following are metric spaces.
“a. Let S be the set of integers, with p(x, y) = |x — y).
b. Let S be the set of integers, with p(x, y) = 0 if x =y, 1 if x # 9.
c. Let § be the set of all continuous, strictly increasing functions on
[a, 8], with p(x, 5) = maxemss [¥(t) — 5(0).
d. Let S be the set of all continuous, strictly increasing functions on
la, b], with p(x, y) = [%|x(t) — y(9)|dt.
e. Let § be the set of all rational numbers, with p(x, y) = |x — y|.
f. LetS = R, with p(x, y) = f(|x — y|), where f: R, — R, is continuous,
strictly increasing, and strictly concave, with f(0) = 0.

For vector spaces, metrics are usually defined in such a way that the
distance between any two points is equal to the distance of their differ-
ence from the zero point. That is, since for any points x and y in a vector
space S, the point x — y is also in S, the metric on a vector space is usually

defined in such a way that p(x, y) = p(x — y, 9). To define such a metric,
we need the concept of a norm.

DEFINITION A normed vector space is a vector space S, together with a
norm ||: § — R, such that for all x, y € S and a € R:

a. |lx|| = 0, with equality if and only if x = 6;

b. |l = la] - |lx]; and

c. |lx + yll < llxl| + [ly]| (the triangle inequality).
Exercise 3.4 Show that the following are normed vector spaces.
a. Let § = R}, with [lx]| = [ 411”2 (Euclidean space).
b. Let S = R/, with ||x|| = max; |x].
c. Let § = R), with [x| = L, |xi.
d. Let S be the set of all bounded infinite sequences (x;, xo, . . .), x; €

R, all &, with ||x|| = sup; |x|. (This space is called .)

e. Let S be the set of all continuous functions on [a, b], with ||x|| =
SUPasi=s |%(?)]. (This space is called C[a, b].)

f. Let S be the set of all continuous functions on [a, 5], with ||x]| =
J% |x(0)|dt.
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It is standard to view any normed vector space (S, [}) as a metric space,
where the metric is taken to be p(x, y) = [lx — 3], allx, y € S. '
The notion of convergence of a sequence of real numbers carries over

without change to any metric space.

DEFINITION A sequence {x}n-o in S converges to x € S, if for each € > 0,
there exists N such that

1) plxn, x) <&, aln=N,.

Thus a sequence {x,} in a metric space (S, p) converges to x € S if and
only if the sequence of distances {p(x, %)}, 2 sequence in R, converges
to zero. In this case we write x, —> X.

Verifying convergence directly involves having a “candidate” for the
limit point x so that the inequality (1) can be checked. When a cafxdldate
is not immediately available, the following alternative criterion is often
useful.

DEFINITION A sequence {x.}n=0 in S is a Cauchy sequence (satisfies the
Cauchy criterion) if for each & > 0, there exists N, such that

@ PG, xn) < &, alln, m=N,.

Thus a sequence is Cauchy if the points get closer and closer to each
other. The following exercise illustrates some basic facts about conver-
gence and the Cauchy criterion.

Exercise 3.5 a. Show thatif x,— x and x,— y, thenx = y. Thatis,
if {x,} has a limit, then that limit is unique. . .
b. Show that if a sequence {x,} is convergent, then it satisfies the

Cauchy criterion. o N
c. Show that if a sequence {x,} satisfies the Cauchy criterion, then it is

bounded.
d. Show that x, — x if and only if every subsequence of {x,.} converges

to x.

The advantage of the Cauchy criterion is that, in contrast to (1), (2) can -

be checked with knowledge of {x.} only. For the Cauchy criterion to be
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useful, however, we must work with spaces where it implies the existence
of a limit point.

DEFINITION A metric space (S, p) is complete if every Cauchy sequence in S
converges to an element in S. :

In complete metric spaces, then, verifying that a sequence satisfies the
Cauchy criterion is a way of verifying the existence of a limit point in S.

Verifying the completeness of particular spaces can take some work.
We take as given the following

FACT The set of real numbers R with the metric p(x, y) = |x — y| is a complete
melric space.

Exercise 3.6 a. Show that the metric spaces in Exercises 3.3a,b
and 3.4a—e are complete and that those in Exercises 3.3c—e and 3.4f are
not. Show that the space in 3.3c is complete if “strictly increasing” is
replaced with “nondecreasing.”

b. Show that if (S, p) is a complete metric space and S’ is a closed
subset of S, then (S’, p) is a complete metric space.

A complete normed vector space is called a Banach space.

The next example is no more difficult than some of those in Exercise
3.6, but since it is important in what follows and illustrates clearly each of
the steps involved in verifying completeness, we present the proof here.

THEOREM 3.1 Let X C R, and let C(X) be the set of bounded continuous
functions f: X — R with the sup norm, || f|| = sup.ex | f(x)|. Then C(X) is a
complete normed vector space. (Note that if X is compact then every continuous

function is bounded. Otherwise the restriction to bounded functions must be
added.)

Proof. That C(X) is a normed vector space follows from Exercise 3.4e.
Hence it suffices to show that if { f,,} is a Cauchy sequence, there exists f €
C(X) such that

for any £ > 0 there exists N, such that ||, — fl <&, alln=N,.
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Three steps are involved: to find a “candidate” function f; to show that
{f.} converges to f in the sup norm; and to show that f € C(X) (that f'is
bounded and continuous). Each step involves its own entirely distinct
logic.

Fix x € X; then the sequence of real numbers {f.(x)} satisfies

| fulx) = ful0)l = sup L) = fa)] = I fe = full:

Therefore it satisfies the Cauchy criterion; and by the completeness of
the real numbers, it converges to a limit point-—call it f (x). The limiting
values define a function f: X — R that we take to be our candidate.

Next we must show that ||f, — f]| = 0 as n — . Let £ > 0 be given and
choose N, so that n, m = N, implies | f, — full = &/2. Since { f.} satisfies the
Cauchy criterion, this can be done. Now for any fixed x € X and all
m=mn=N,,

‘fn(x) —f(x)l = |fn(x) _fm(x)l + lfm(x) '_f(x)i
= |fa = full + | ful®) — f]
= &/2 + | fulx) — fix)].

Since { f(x)} converges to f(x), we can choose m separately for each fixed
x € X so that | f(x) — f(x)| = &/2. Since the choice of x was arbitrary, it
follows that ||f, — f|| = &, all n = N,. Since ¢ > 0 was arbitrary, the
desired result then follows.

Finally, we must show that f is bounded and continuous. Boundednegs
is obvious. To prove that f is continuous, we must show that for every
& > 0 and every x € X, there exists & > 0 such that

Ife) — Ol < e if |« =3l <3,
where |||z is the Euclidean norm on R'. Let & and x be given. Choose k so

that ||f — fil < &/3; since f, — f (in the sup norm), such a choice is
possible. Then choose & so that e

llx = 3lle < & implies |fiulx) — fily)| < /3.
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Since f} is continuous, such a choice is possible. Then
1fe) = fON = 1f () = filo) + 1 fitx) = LGN + 1) = FO)
=2llf = fll + 1fitx) = fiiyl

<eg =

Although we have organized these component arguments into a theo-
rem about a function space, each should be familiar to students of calcu-
lus. Convergence in the sup norm is simply uniform convergence. The
proof above is then just an amalgam of the standard proofs that a se-
quence of functions that satisfies the Cauchy criterion uniformly con-
verges uniformly and that uniform convergence “preserves continuity.”

Exercise 3.7 a. Let C'[a, b] be the set of all continuously dif-
ferentiable functions on [4,b] = X C R, with the norm ||f] =

sup:ex{|f®)| + |f'()[}. Show that C'[a, b] is a Banach space. [Hint. Notice
that

ggxplf(x)l + ggxplf ‘Il =1l = max{sg}glf @)l sgxplf "(x)[}]

b. Show:that this set of functions with the norm ||f]| = sup,ex|f(x)| is
not complete. That is, give an example of a sequence of functions that is
Cauchy in the given norm that does not converge to a function in the set.
Is this sequence Cauchy in the norm of part (a)? ’

c. Let C¥a, b] be the set of all % times continuously differentiable
functions. on [a, b] = X C R, with the norm ||f|| = =&, a; max.ex|fi(x)],
where f* = dif (x)/dx’. Show that this space is complete if and only if o; >
0,:=0,1,...,k

3.2 The Contraction Mapping Theorem

In this section we prove two main results. The first is the Contrac-
tion Mapping Theorem, an extremely simple and powerful fixed point
theorem. The second is a set of sufficient conditions, due to Blackwell,
for establishing that certain operators are contraction mappings. The
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Jatter are useful in a wide variety of economic applications and will be
drawn upon extensively in the next chapter.
We begin with the following definition.

DEFINITION Let (S, p) be a metric space and T: S — S be a function map-
ping S into itself. T is a contraction mapping (with modulus B) if for some
B € (0, 1), p(Tx, Ty) =< Bp(x, 3), for all x,y € S.

Perhaps the most familiar examples of contraction mappings are those
on a closed interval § = [a, b], with p(x, y) = |x — j|. Then T: S — Sisa
contraction if for some 8 € (0, 1).

IT: _T|SB<1, allx, y € S withx # y.
I =l

Thatis, T is 2 contraction mapping if it is a function with slope uniformly
less than one in absolute value.

Exercise 3.8 Show that if T is a contraction on S, then T is uni-
formly continuous on S.

The fixed points of T, the elements of S satisfying Tx = x, are the
intersections of Tx with the 45° line, as shown in Figure 3.1. Hence it is
clear that any contraction on this space has a unique fixed point. This
conclusion is much more general.

THEOREM 3.2 (Contraction Mapping Theorem) I, I (S, p) is a complete metric
space and T: S — S is a coniraction mapping with modulus B, then

a. T has exactly one fixed point v in S, and

b. for any vg € S, p(T"vo, v) = Bro(vp, v),n=0,1,2,....

Proof. To prove (a), we must find a candidate for v, show that it
satisfies Tv = v, and show that no other element 7 € S does.

Define the iterates of T, the mappings {T"}, by T% = x, and T"x =
T(T*x),n=1,2,....Choose vy € S, and define {v,}a=0 by vn+1 = Tn,
so that v, = T™v,. By the contraction property of T,

p(vs, v1) = p(Tvy, Tug) = Bp(vi, vo)-
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Continuing by induction, we get
() P(Uns+1, V) = B0y, v0), n=1,2,....
Hence, for any m > n,
P(Wms Vn) = p(Um, Un-1) + **+ + P(Vnta, Vnt1) + P(Un+1, V)
< (Bl e+ B+ B p(or, v0)

- Bn[ﬁm—-n——l + -0+ B + ﬂp(vl) UO)

n

@ =755 o),

where the ﬁl:st line uses the triangle inequality and the second follows
from (1). It is clear from (2) that {v,} is a Cauchy sequence. Since § is

complete, it follows that v, — v € §.
To show that Tv = v, note that for all n and all vy € S,
p(T'v, v) = p(Tv, T™vg) + p(T" vy, v)

= Bp(v, T" vg) + p(T"vo, v).



52 3 | Mathematical Preliminaries

We have demonstrated that both terms in the last expression converge to
zero as n — ; hence p(Tv, v) = 0, or Tv = v.

Finally, we must show that there is no other function # € § satisfying
T = 9. Suppose to the contrary that 9 # v is another solution. Then

0 < a = p(d,v) = p(Tt, Tv) = Bp(d, v) = Ba,

which cannot hold, since 8 < 1. This proves part (a).
To prove part (b), observe that for any n = 1

p(T™o, v) = p[T(T" 'vy), Tv] = Bp(T" 0o, ),
so that (b) follows by induction. =

Recall from Exercise 3.6b that if (S, p) is a complete metric space and
S'is a closed subset of S, then (S', p) is also a complete metric space. Now
suppose that T: § — § is a contraction mapping, and suppose further
that T maps S into itself, T(§') C § ' (where T(S') denotes the image of
S’ under T). Then T is also a contraction mapping on §'. Hence the
unique fixed point of T on § lies in §". This observation is often useful
for establishing qualitative properties of a fixed point. Specifically, in
some situations we will want to apply the Contraction Mapping Theorem
twice: once on a large space to establish uniqueness, and again on a
smaller space to characterize the fixed point more precisely.

The following corollary formalizes this argument.

COROLLARY 1 Let (S, p) be a complete metric space, and let T: S — S bea
contraction mapping with fixed point v € S. If S' is a closed subset of S and
T(S") C S', thenv € §'. If in addition T(S'YCS"CS', thenv € §".

Proof. Choose vp € S', and note that {T™vo} is a sequence in S’

converging to v.-Since S' is closed, it follows that v € §'. If in addition ~

T(S') CS", then it follows that v = Tv € S, =

Part (b) of the Contraction Mapping Theorem bounds the distance
p(T"v,, v) between the nth approximation and the fixed point in terms
of the distance p(vo, v) between the initial approximation and the fixed
point. However, if v is not known (as is the case if one is computing v),
then neither is the magnitude of the bound. Exercise 3.9 gives a compu-
‘tationally useful inequality.

3.2 | Contraction Mapping Theorem 53

Exercise 3.9 * Let (S, p), T, and v be as given abo
,P), T, . ve, let B b .
modulus of T, and let v, € S. Show that ¢ ? fbe the

) 1
p(T™vy, v) = m p(Tnvo, Tn+11!0).

. The following result is a useful generalization of the Contraction Map-
ping Theorem. g’

cogo LLARY 2 (N-Stage Contraction Theorem) Let (S, p) be a complete
metric sp.ace, let T: S — S, and suppose that for some integer N, TN: S — S is a
contraction mapping with modulus B. Then

a. T has exactly one fixed point in S, and

b. for any vy € S, p(T™v,, v) < Bo(ve, v), k=0, 1,2, . ...

I'Jroof. We will show that the unique fixed point v of TV is also the
unique fixed point of 7. We have )

p(Tv, v) = p[T(TVv), TVv] = p[TN(Tv), TNv] =< Bp(T, v).

Since B8 6 (O, l),. this implies that p(Tv, v) = 0, so v'is a fixed point of T.
To establish uniqueness, note that any fixed point of T is also a fixed

point of TV. Part (b) is established using the sa i
proof of Theorem 3.2. = s e argument asin the

The next exercise shows how the Contraction Mapping Theorem is

used to prove existence and uniqueness of a solution to a differential
equation. '

. errcise 3.10 Consider the differential equation and boundary
condition dx(s)/ds = f[x(s)], all s = 0, with x(0) = ¢ € R. Assume that
f R — Ris continuous, and for some B > 0 satisfies the Lipschitz condi-
tion |f(a) — f(b)| = Bla — b|, all a, b € R. For any ¢ > 0, consider C[0, ]
the space of bounded continuous functions on [0, ¢, with the éup nor’m’
Recall from Theorem 3.1 that this space is complete. ‘

a. Show that the operator T defined by

(To)(s) = ¢ + fo flo@ldz, 0=s=1t,
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maps C[0, t] into itself. That is, show that if v is bounded and continuous

on [0, t], then so is Tv.

b. Show that for some = > 0, T is a contraction on C[0, 7].

c. Show that the unique fixed point of T on C[0,7]is a differemigble
function, and hence that it is the unique solution on [0, 7] to the given

differential equation.

Another useful route to verifying that certain operators are contrac-
tions is due to Blackwell.

THEOREM 3.3 (Blackwell’s sufficient conditions for a contraction) Let
X C R, and let B(X) be a space of bounded functions f: X — R, with the
sup norm. Let T: B(X) = B(X) be an operator satisfying o
a. (monotonicity) f, g € B(X) and f(x) = g(x), for all x € X, implies
(Tf)(x) = (Tg)(x), for all x € X;
b. (discounting) there exists some B € (0, 1) such that

[T(f + a)l(x) = (Tf)(x) + Ba, allf€EB(X),a=0,x€ X.

[Here (f + a)(x) is the function defined by (f + a)(x) = f(x) + a.] Then T isa
contraction with modulus 3.

Proof. Iff(x) = g(x) for allx € X, we write f = g. For any f, g € B(X),
f=g+|f - gl Then properties (a) and (b) imply that

Tf = T(g + IIf - g = Tg + Blf — &l
Reversing the roles of f and g gives by the same logic
Tg = Tf + Blf — gl

Combining these two inequalities, we find that ITf = Tgl = BIf — gll. as
was to be shown. ®

In many economic applications the two hypotheses of Blackwell’s .the-
orem can be verified at a glance. For example, in the one-sector optimal
growth problem, an operator T was defined by B

(To)(k) = max {ULf(®R) — 31 + BrO)}-

=<y=f(k)
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If u(y) = w(y) for all values of y, then the objective function for which Tw
is the maximized value is uniformly higher than the function for which
Tv is the maximized value; so the monotonicity hypothesis (a) is obvious.
The discounting hypothesis (b) is equally easy, since

T(v + a)(k) = max {U[f() — y] + Blu(y) + al}
0sy<fty -

max {U[f(k) — y] + Bu(y)} + Ba

0=y=f(k)

I

(Tv)(k) + Ba.

Blackwell’s result will play a key role in our analysis of dynamic pro-
grams.

3.3 The Theorem of the Maximum

We will want to apply the Contraction Mapping Theorem to analyze
dynamic programming problems that are much more general than the
examples that have been discussed to this point. If x is the beginning-of-
period state variable, an element of X C R/, and y € X is the end-of-
period state to be chosen, we would like to let the current period return
F (x, y) and the set of feasible y values, given x, be specified as generally as
possible. On the other hand, we want the operator T defined by

(Tv)(x) = sup [F (x, y) + Bu(y)]
¥

s.t. y feasible given.x,

to take the space C(X) of bounded continuous functions of the state into
itself. We would also like to be able to characterize the set of maximizing
values of y, given x.

To describe the feasible set, we use the idea of a correspondence from a
set X into a set Y a relation that assigns a set I'(x) C Y to each x € X. In
the case of interest here, ¥ = X. Hence we seek restrictions on the corre-
spondence I': X — X describing the feasibility constraints and on the
return function F, which together ensure that if v € C(X) and (Tv)(x) =
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supyerel F (x, y) + Bu(y)] then Tv € C(X). Moreover, we wish to deter-
mine the implied properties of the correspondence G(x) containing the
maximizing values of y for each x. The main result in this section is the
Theorem of the Maximum, which accomplishes both tasks.

LetX C RsletY C R letf: X X Y — R be a (single-valued) function;
and let T: X — Y be a (nonempty, possibly- multivalued) correspondence.
Our interest is in problems of the form: supyerwf (, y)- If for each x,
flx, -) is continuous in y and the set I'(x) is nonempty and compact, then
for each x the maximum is attained. In this case the function

1) h(x) = max f(x, y)
yEr' )

is well defined, as is the nonempty set
(2) Gix) = {y € T(x): flx,9) = h(x)} .

of y values that attain the maximum. In this section further restrictions
on fand I' will be added, to ensure that the function & and the set G vary
in a continuous way with x.

There are several notions of continuity for correspondences, and each
can be characterized in a variety of ways. For our purposes it is conven-
ient to use definitions stated in terms of sequences.

DEFINITION A correspondence': X — Y'is lower hemi-continuous (L.h.c.)
at x if T'(x) is nonempty and if, for every y € I'(x) and every sequence X, —> X,
there exists N = 1 and a sequence {yn}n=n such that yn =y and y, € T(x,), all
n = N. [If T(x') is nonempty for all x' € X, then it is always possible to take
N=1]

DEFINITION A compact-valued correspondence [: X — Y is upper hemi-
continuous (u.h.c.) at x if T'(x) is nonempty and if, for every sequence X, —> % and
every sequence {yn} such that y, € T'(x,), all n, there exists a convergent subse-
quence of {yn} whose limit point y is in I'(x).

Figure 3.2 displays a correspondence that is Lh.c. but not u.h.c. at xi; is
w.h.c. but not Lh.c. at x; and is both u.h.c. and Lh.c. at all othiér points.
Note that our definition of u.h.c. applies only to correspondences that
are compact-valued. Since all of the correspondences we will be dealing
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w.1[.h satisfy this requirement, the restriction will not be binding. (A defi-
nition of ‘u.h.c. for all correspondences is available, but it is stated in

;erms of images of open sets. For our purposes this definition is much
ess convenient, and its wider scope is never useful.)

DEFINITION -A correspondence I': X — Y i i o
. s continuous at x € ]
both w.h.c. and Lh.c. at x. X af at is

A correspondence I': X — Y is called Lh.c., u.h.c., or continuous if it has
that property at every point x € X. The following exercises highlight
some important facts about upper and lower hemi-continuity. Note that

if [':: X — Y, then for any set X C X, we define
I'X) = {y € Y: y € I'(x), for some x € X}.
Exercise 3.11 a. Show thatif I' is single- : i
 conereis s single-valued and u.h.c., then it

b. Let T: R*— R¥" and défine ¢: Rt — R' by

o(x) = {y1 € R: (31, y2) € I'(x) for some y, € R}
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Show that if T is compact-valued and u.h.c., then so is ¢.
c. Let ¢: X—>Y and ¢: X—> Y be compact-valued and u.h.c., and

defineI' = ¢ U ¢ by
Tx) ={y EY:y € d(x) U Y(x)}, allxEX.

Show that I is compact-valued and u.h.c.
d. Let ¢: X— Y and ¢: X — Y be compact-valued and u.h.c., and

suppose that
Tx)={y € Y:y € o(x) N Y(x)} # 4, allx EX.

Show that I is compact-valued and u.h.c.
e. Show thatif ¢: X — Yand §: Y — Z are compact-valued and u.h.c.,

then the correspondence yo¢ = I': X — Z defined by
T(x) = {z € Z: z € Y(y), for some y € $(x)}

is also compact-valued and u.h.c.
f. Let I“;:pX —Y,i=1,...,k be compact-valued and u.h.c. Show

thatT: X = Y = Y, X ... X Y, defined by
IFxy={yEY:y=0On---Mm where y; € Ti(x), ¢ = 1,...,k},

is also compact-valued and u.h.c.

g. Show that if [ X — Y is compact-valued and u.h..c., then for any
compact set K C X, the set I'(K) C Y is also compact. [IjImt‘ To show that
I'(K) is bounded, suppose the contrary. Let {y.} be a divergent sequence
in T(K), and choose {x,} such that y, € I'(x.), all n.]

Exercise 3.12 a. Show that if T is single-valued and Lh.c., then it
is continuous.
b. Let I': R — R*™, and define ¢: R* — R' by
o(x) = {y1 € R: (91, 92) € I'(x), for some y; € R"}.

Show that if T is Lh.c., then so is ¢. .
c. Let ¢: X — Y and ¢: X — ¥ be Lh.c., and define I' = ¢:4J ¢ by

I'x) ={yEY:y E d(x) U Yx)}, allx €X.
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Show that I' is Lh.c.
d. Let ¢: X — Y and ¢: X — Y be Lh.c., and suppose that

IFx)={yEY:yE d(x) N Y(x)} # 9, allx € X.

Show by example that I need not be Lh.c. Show that if ¢ and  are both
convex-valued, and if int ¢(x) N int Y(x) # @, then T is Lh.c. at x.

e. Show thatif ¢: X — Y and §: Y — Z are Lh.c., then the correspon-
dence Yo d = I': X — Z defined by

I(x) = {z € Z: 2 € Y(y), for some y € ¢(x)}

is also Lh.c.

f.LetT':X—Y,i=1,...,k belhc ShowthatT: X — Y = Y X
... X Y} defined by

Fx) ={yE€Y:y=(y,...,3m), wherey, ETix),i = 1, ..., k}

is Lh.c.

The next two exercises show some of the relationships between con-
straints stated in terms of inequalities involving continuous functions
and those stated in terms of continuous correspondences. These rela-
tionships are extremely important for many problems in economics,

where constraints are often stated in terms of production functions,
budget constraints, and so on. :

Exercise 3.13 a. Let I': R, — R, be defined by I'(x) = [0, x].
Show that I' is continuous.
b. Let f: R} — R, be a continuous function, and define the corre-
spondence I': R} — R by I'(x) = [0, f(x)]. Show that I' is continuous.
c. Let fi: Ry XR*">R,, i=1,..., {, be continuous functions.
Define I': R}, x R™— R} by

l
I(x, z) = {yeR{":OSyisﬁ(xi:z):i=ly--.,l,‘ande"Sx}‘

i=1

Show that I is continuous.
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Exercise. 3:14 a. Let H(xy): Ry x RE— R be continuous,
strictly increasing in its first [ arguments, strictly decreasing in its last
m arguments, with H(0,0) = 0. Define T: RE— R™ by I'tx) ={y €
R™: H(x, y) = 0}. Show that if I'(x) is compact-valued, then I' is continu-
ous at x.

b. Let H(x, y): R! X R™ — R be continuous and concave, and define I’
as in part (a). Show that if I'(x) is compact-valued and there exists some
$ € I'(x) such that H (x, §) > 0, then T is continuous at x.

c. Define H:R X R—> R by H(x,y) = 1 — max{jx], [y}, and define
I'(x) as in part (a). Where does I' fail to be Lh.c.?

When trying to establish properties of a correspondence I': X — Y, itis
sometimes useful to deal with its graph, the set

A={xy EXxY:y€ETM}

The next two results provide conditions on A that are sufficient to
ensure the upper and lower hemi-continuity respectively of T

THEOREM 3.4 Let I: X — Y be a nonempty-valued correspondence, and let
A be the graph of T. Suppose that A is closed, and that for any bounded set X C
X, the set I'(X) is bounded. Then T is compact-valued and u.h.c.

Proof. Foreachx € X, T'(x) is closed (since A is closed) and is bounded
(by hypothesis). Hence I' is compact-valued.

Let £ € X, and let {x,} C X with x, — £. Since I' is nonempty-valued,
we can choose y,, € I'(x,), all n. Since x, — %, there is a bounded setXCX
containing {x,} and £. Then by hypothesis ['(X) is bounded. Hence {y.} C
I'X) has a convergent subsequence, call it {y»}; let § be the limit point of
this subsequence. Then {(xn, yx)} is a sequence in A converging to (%, 9);
since A is closed, it follows that (%, §).€ A. Hencej € I'®), so isu.h.c. at
#. Since # was arbitrary, this establishes the desired result. =

To see why the hypothesis of boundedness is required in Theorem
3.4, consider the correspondence I': R+ — R+ defined by

I©) = 0, and TI'(x) = {0, 1/x}, allx>0.

The graph of T is closed, but I' is not wh.c atx = 0.
-The next exercise is a kind of converse to Theorem 3.4.
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Exerci.f‘e 3.15 LetT: X— Y be a compact-valued u.h.c. corre-
spondence with graph A. Show that if X is compact then A is compact.

The next theorem deals with lower hemi-continuity. For any x € R!

and any & > 0, let B(x, &) denote the clos .
’ 4 ed ball of
% B(x, &) = &' € X: |x — x'|| = 8). of radius & about

; }Z E 2 REM 3.5 LetI': X — Y.be a nonempty-valued correspondence, and let
¢ the graph of T. Suppose that A is convex; that for any bounded set X C X,
there is a bounded set Y C Y such that T(x) N Y # 0, all x € X; and tha? fo;

every x € X, there exists some € > 0 such that the set .
convex. Then T is Lh.c. ‘ e Bl ) 0 X closed and

5rgof. Choose £ € X; § € I'®); and {x,} C X with x,— & Choose
;:O sucl;v thatlthe set X = B(#, £) N X is closed and convex. Note that
r some N = s Wi i
o , X, € X, all n = N; without loss of generality we take
LetD dex}ote the boundary of the set X. Every point x, has at least one
representation as a convex combination of £ and a point in D. For each n
choose a, € [0, 1] and d, € D such that ’

Xy = Qudy + (1 = )i

Since D is a bounded set and_' %, = %, it follows that @, — 0. Choose ¥

such that T'(x) N ¥ # @, all x € X. Then f. g
B n vor each n, choose §, € I'(d,) N

Yn = anﬁn + (1 - a”)f, all n.

Since (d,, §.) € 4, all n, (%, §) € A, and A is convex, it follows thaﬁ
(%n, y2) € A, alAl n Moreover, since a, — 0 and all of the J.'s lie in the
bounded s:st Y, it follows that'y, — §. Hence {(x,, )} lies in A and con-
verges to (%, §), as was to be shown. =

We. are now ready to answer the questions we posed at the beginning
of this section: Under what conditions do the function A(x) defined by
the maximization problem in (1) and the associated set of maximizing

" y values G(x) defined in (2) vary continuously with x? An answer is pro-

vided in the following theorem, which will repeatedly be applied later. -
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THEOREM 3.6 (Theorem of the Maximum) Let X C R and Y C R™, let
fiXXY—>Rbea continuous function, and let [': X — Y be a compact-valued
and continuous correspondence. Then the function h: X = R defined in (1) is
continuous, and the correspondence G: X — Y defined in (2) is nonempty, com-

pact-valued, and u.h.c.

Proof. Fix x € X. The set I'(x) is nonempty and compact, and f(x, -) is
continuous; hence the maximum in (1) is attained, and the set G(x) of
maximizers is nonempty. Moreover, since G(x) C I'(x) and I'(x) is com-
pact, it follows that G (x) is bounded. Suppose y, — 3, and y, € G(x), all n.
Since I'(x) is closed, y € I'(x). Also, since h(x) = f(x, y.), all », and f is
continuous, it follows that f(x, y) = h(x). Hence y € G(x); so G(x) is
closed. Thus G(x) is nonempty and compact, for each x.

Next we will show that G(x) is u.h.c. Fix x, and let {x,} be any sequence
converging to x. Choose y, € G (%), all n. Since I' is u.h.c., there exists a
subsequence {y,} converging to y € I'(x). Let z € I'(x). Since I is Lh.c,
there exists a sequence z, — 2, with z, € T'(x,,), all k. Since f(xn, yn) =
f(n,, za), all k, and f is continuous, it follows that f(x, y) = f(x, 2). Since
this holds for any z € T'(x), it follows thaty € G(x). Hence G is u.h.c.

Finally, we will show that h is continuous. Fix x, and let {x,} be any
sequence converging to x. Choose y, € G(x,), all n. Let & = lim sup h(xx)
and h = lim inf h(x,). Then there exists a subsequence {x,} such that
ki = lim f (%, y»). But since G is u.h.c., there exists a subsequence of {y,},
call it {y}, converging to y € G(x). Hence h = lim f(x; y) = flx,y) =
h(x). An analogous argument establishes that h(x) = k. Hence {k(x,)} con-
verges, and its limit is h(x). ®

The following exercise illustrates through concrete examples what this
theorem does and does not say.

Exercise 3.16 a. Let X =R, and let I'(x) =Y =[], +1], all
x € X. Define f: X X Y = Rby f(x,y) = »* Graph G(x); show that G(x)
is w.h.c. but not Lh.c. at x = 0.
b. Let x = R, and let I'(x) = [0, 4], all x € X. Define

fley) = max(2 = (y = Dx+ 1= (=27

Graph G(x) and show that it is u.h.c. Exactly where does it fail to be
Lh.c.?
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c LetX=RTx)={yER:—x <y =
T) = :—x =<y =< x},and f(x, y) = cos(y). Graph
G(x) and show that it is u.h.c. Exactly where does it fail to be )l).h.c.? ’

Sl{ppose that in addition to the hypotheses of the Theorem of the
ngxmum the correspondence I is convex-valued and the function fis
strlcl.:ly concave in y. Then G is single-valued, and by Exercise 3.11a it is a
continuous function—call it g. The next two results establish properties
of g. Lemma 3.7 shows that if f(x, y) is close to the maximized value
flx, g(x)], then y is close to g(x). Theorem 3.8 draws on this result to show
.that if {f,} is.a sequence of continuous functions, each strictly concave
In y, converging uniformly to f, then the sequence of maximizing func-

tions {g,} converges pointwi
se to g. The latter convergence i i
. . S
if X is compact. \ ¥ uniform

; fZMMA 3..7 Let X C R and Y C R™ Assume that the correspondence
: X — Y is nonempty, compact- and convex-valued, and continuous, and let A
be the graph of I'. Assume that the function f: A — R is continuou’s and that
f (@, ) is strictly concave, for each x € X. Define the function g: X — Y by

g(x) = argmax f(x, y).
yEl()

Then for each & > 0 and x € X, there exists 8, > 0 such that

y € I'(x) and |f[x, g(*)] — f(x, y)| < &, implies [|g(x) — 5] < e.

If X is compact, then 8 > 0 can be chosen independently of x.

Pr.oof. Nott.e that under the stated assumptions g is a well-defined
continuous (single-valued) function. We first prove the claim for the case’

where X is compact. Note that in this case A i
: e A is a com .
8.15. For each & > 0, define pact set by Exercise

A. = {(x,y) € A: |lg(x) — y]| = &}
If A, =9, all >0, then T is single-valued and the result is trivial.

f)therwise thgre exists & > 0 sufficiently small such that for all 0 < & <
&, the set A, is nonempty and compact. For any such &, let

= (:Eg: [f[x, g@)] = f(x, 9)-
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Since the function being minimized is continuous and A, is com.pact, the
minimum is attained. Moreover, since [x, g(x)] € A, all x € X, it follows
that 8 > 0. Then

y € T() and [lg(x) — yll = & implies |f[x, g@] = [ )| =3,
as was to be shown. .
If X is not compact, the argument above can be applied separately for
each fixedx € X. ®
THEOREM 3.8 LetX,Y, T, and A be as defined in Lemma 3.7. Let {fu} be a
sequence of continuous (real-valued) functions on A; assume that for each n and
each x € X, fu(x, ) is strictly concave in its second argument. Assume that f has

the same properties and that f, — f uniformly (in the sup norm). Define the
functions g, and g by

ga(x) = argmax fu(x, y), n = 1,2,...,and
yEL(x)

g(x) = argmax f (x, y).
YED()

Then g, — g pointwise. If X is compact, gn —=> & uniformly.

Proof. First note that since gu(x) is the unique maximiz.er of fu(x, -) on
I'(x), and g(x) is the unique maximizer of f(x, ) on I'(x), it follows that

0 = f[x, g&)] — flx, gu(x)]
= flx, g1 — fulx, g®)] + fulx, gu@)] — flx; gn(®)]
=2f - full, allx €X.

Since f, — f uniformly, it follows immediately that for any 8 > 0, there
exists Ms = 1 such that

&) 0 < flx, g)] — flx, g1 = 2lf = full <8,

allx € X, all n = M.

e
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To show that g, — g pointwise, we must establish that for each ¢ > 0
and x € X, there exists N, = 1 such that ‘

©) lgx) — gux)| <&, alln=N,.

By Lemma 3.7, it suffices to show that for any &, > 0 and x € X there

. exists N, = 1 such that

(5) lf[x: g(x)] ~f[x’ gn(x)]l < 6,;, alln = N,.

From (3), it follows that any N, = M;_has the required property.

Suppose X is compact. To establish that g, — g uniformly, we must
show that for each &£ > 0 there exists N = 1 such that (4) holds for all
x € X. By Lemma 3.7, it suffices to show that for any & > 0, there exists
N = 1, such that (5) holds for all x € X. From (3) it follows that any N =
M; has the required property. =
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L.B). Both of these also contain excellent treatments of upper and lower
hemi-continuity.



