4  Dynamic Programming under Certainty

Posed in terms of infinite sequences, the problems we are interested in
are of the form

sug 2 B'F (%, x1+1)

(SP)
{x41l=0 =0
S.t. Xi+1 € r(xg), t= 0, l, 2, ey
xo € X given.

Corresponding to any such problem, we have a functional equation of
the form

(FE) v(x) = sup [F(x, y) + Bu(y), allx€ X.
¥l

In this chapter we establish the relationship between solutions to these
two problems and develop methods for analyzing the latter.

Exercise 4.1 a. Show that the one-sector growth model dis-
cussed at the beginning of Chapter 3 can be expressed as in (SP).
b. Show that the many-sector growth model

sup_ X BU(c)
liephya =g =0 )
st. k1t k)EY, t= 0,12,...,
given k € RY,

where ¥ C R¥ is a fixed production set, can also be written this way.
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As we hinted in the last chapter and will show in this one, some very

werful—and relatively simple—mathematical tools can be used to
study the functional equation (FE). To take advantage of these, however,
we must show that solutions to (FE) correspond to solutions to the se-
quence problem (SP). In Section 4.1 we rigorously establish the connec-
tions between solutions to these two problems, connections that Richard
Bellman called the “Principle of Optimality.” Section 4.2 then develops
the main results of the chapter: existence, uniqueness, and characteriza-
tion theorems for solutions to (FE) under the assumption that the return
function F is bounded. The case where F displays constant returns to
scale is treated in Section 4.3, and the case where F is an arbitrary
unbounded return function in Section 4.4. Section 4.5 treats the rela-
tionship between the dynamic programming approach to optimization
over time and the classical (variational) approach. Section 4.6 contains
references for further discussion of some of the mathematical and eco-
nomic ideas. In Chapter 5 we illustrate how the methods developed in
Sections 4.2—4.4 can be applied to a wide variety of economic problems.

4.1 The Principle of Optimality

In this section we study the relationship between solutions to the prob-
lems (SP) and (FE). (Note that “sup” has been used instead of “max” in
both, so that we can ignore—for the moment—the question of whether
the optimum is attained.) The general idea, of course, is that the solution
v to (FE), evaluated at xo, gives the value of the supremum in (SP) when
the initial state is xo and that a sequence {x.+1}i-o attains the supremum in
(SP) if and only if it satisfies

(1) v(x) = F (%, X41) + Bv(x+1), t=0,1,2,....

Richard Bellman called these ideas the Principle of Optimality. Intuitive
as it is, the Principle requires proof. Spelling out precisely the conditions
under which it holds is our task in this section.

The main results are Theorem 4.2, establishing that the supremum
function v* for the sequence problem (SP) satisfies the functional equa-
tion (FE), and Theorem 4.3, establishing a partial converse. The “par-
tial” nature of the converse arises from the fact that a boundedness
condition must be imposed. Theorems 4.4 and 4.5 then deal with the
characterization of optimal policies. Theorem 4.4 shows that if {xee1}ieo 18
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a sequence attaining the supremum in (SP), then it satisfies (1) for v =
v*. Conversely, Theorem 4.5 establishes that any sequence {x1+1}=0 that
satisfies (1) for v = v*, and also satisfies a boundedness condition, attains
the supremum in (SP). The four theorems taken together thus establish
conditions under which solutions to (SP) and to (FE) coincide exactly,
and optimal policies are those that satisfy (1).

To begin we must establish some notation. Let X be the set of possible
values for the state variable x. In this section we will not need to impose
any restrictions on the set X. It may be a subset of a Euclidean space, a
set of functions, a set of probability distributions, or any other set. Let
I: X — X be the correspondence describing the feasibility constraints.
That is, for each x € X, I'(x) is the set of feasible values for the state
variable next period if the current state is x. Let A be the graph of I':

A={x9 €EXxX:y €T}

Let the real-valued function F: A — R be the one-period return func-
tion, and let 8 = 0 be the (stationary) discount factor. Thus the “givens”

for the problem are X, T, F, and B.
First we must establish conditions under which the problem (SP) is

well defined. That is, we must find conditions under which the feasible
set is nonempty and the objective function is well defined for every point

in the feasible set.
Call any sequence {x}-o in X a plan. Given x € X, let

H(xo) = {{x‘}:-o: Xi+1 € r(x'), t= 0, 1, oo .}

be the set of plans that are feasible from x. That is, TI(xo) is the set of all
sequences {x;} satisfying the constraints in (SP). Let x = (xo, %y, . . .) de-
note a typical element of I(xy). The following assumption ensures that
T(xo) is nonempty, for all xo € X.

ASSUMPTION 4.1 T(x) is nonempty, for all x € X.

The only additional restriction on X, T, F, and B8 we will need in this
section is a requirement that all feasible plans can be evaluated using the
objective function F and the discount rate 8.

ASSUMPTION 4.2 For all xo € X and x € M(xo), limy.u2i-oBF (o Xp+1)
exists (although it may be plus or minus infinity).

4.1 inci "Optimali
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Thert.e are a variety of ways of ens
QIearly 1t1s satisfied if the function F i
tively, for any (x, y) € A, let

F'(x,y) = max{0, F(x,5)} and F-x,y) = max{0, ~F (x, y)}

Then Assumption 4.2 holds if for each x) € X and ¥ € I(xy), eith
X 0), €r

n
!,LIE;)B‘F*(":» Xi+1) <+, or

!.LT g) BF (x, x,41) < +%, or both.

Thus a sufficient conditi

tion for Assumptions 4
bounded above or below and ¢ < B<1 :not[llls .
that foreachxy € X and x €Il . .
such that )

~4.2 is that F be
fficient condition i
(o), there exist & € (0, 8-!)and 0 <l :02 :

Fx, x41) < c6, alle

The . . .
e following exercise provides a way of verifying that the latter holds

Exercise 42 a. Show th .
. t . . .
0 < B < I; there exists 0 < 2t Assumption 4.2 s satisfied if X = R};

6 < 1/8 such th = .
ol F (0, 0) = 0; Fis i S at y € I'(x) implies |)y]| <
its last / arg increasing in its first /arguments and decreasi

all x.

b. . .
ms:zwetl:t Assumption 4.2 is satisfied if X = R0<B8<1:th
i 1/ such that y € I'(x) implies F(y, 0) < 6F (x 0); I"‘ N
g In its first / arguments and decreasing in i i
and 0 € I'(x), all x. g m it

= OiFisin its ngin
ents; F is concave in its first / arguments; and 0 € Fg(x)
s last ! arguments;

For each n = 0, l,..., define u,: I(xo) > R by

Ua(®) = X BF(x, x,11).

t=0

Then i i
Y(3) is the partial sum of the (discounted) returns in periods 0

uring that Assumption 4.2 holds,
s bounded and 0 < B < 1. Alterna-
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through n from the feasible plan x. Under Assumption 4.2 we can also
define u: [I(x;) = R by

where R = R U {+, —} is the set of extended real numbers. Thus u(x)
is the (infinite) sum of discounted returns from the feasible sequence x.

If Assumptions 4.1 and 4.2 both hold, then the set of feasible plans
T1(xo) is nonempty for each x € X, and the objective function in (SP) is
well defined for every plan 5 € Il(xo). We can then define the supremum

function v*: X — R by

v*(xo) = sup u(x).
*x€l(xo0)

Thus v*(xo) is the supremum in (SP). Note that it follows by definition
that v* is the unique function satisfying the following three conditions:

a. if [v*(x0)| < =, then
) v*(x0) = u(x), all ¥ € Il(x0);
and for any € > 0,
t) v*(x0) < uly) + &, somex € Il(xo);

b. if v*(xo) = +, then there exists a sequence {x*} in II(xo) such that

limyeu(y*) = +%; and

c. if v¥(xo) = —, then u(y) = —, forally € I(xo)-

Our interest is in the connections between the supremum function v*
and solutions v to the functional equation (FE). In interpreting the next
results, it is important to remember that v* is always uniquely defined
(provided Assumptions 4.1-4.2 hold), whereas (FE) may—for all we
know so far—have zero, one, or many solutions.

We will say that v* satisfies the functional equation if three conditions
hold:

a. If [v*(xo)| < », then

@ v*(x0) = F(xo, y) + Bv*(y), ally € I'(xo),

and for any £ > 0,
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(5) v*(x0) =< F(xo, y) + Bv*(y) + &, somey € I'(xo);
b. if v*(xo) = +=, then there exists a sequence {y*} in I'(xo) such that
(6) lim [F(xo, y*) + Br*(y)] = +oo;
c. if v¥(xp) = —, then

7 F(xo,y) + Bu*(y) = —, ally € I'(x).

. Before we prove that the supremum function v* satisfies the func-
tional equation, it is useful to establish a preliminary result.

LEMMA 4.1 Let X, T, F, and B satisfy Assumption 4.2. Then
’ . - 01' a e
and any (xo, x1, . . .) = x € I(xy), foranyx, € X

u(x) = F(xo, x1) + Bu(x’),
where ' = (x;, x3, . . .).

Proof. Under Assumption 4.2, for any x, € X and any x € Il(xo)

uls) = lim >, B, 5i0)
t=0

= Flsa, %) + B1im >, BF (xr1. 300

t=0

= F(xo, x1) + Bu(y’). =

THEOREM 4.2 Let X, T, F, and B satisfy Assumptions 4.1
: : T, F, 1-42.T
function v* satisfies (FE). P e the

%Zv;f. If B = 0, the result is trivial. Suppose that 8 > 0, and choose
Shiup;:se 1{*(.xo) |s finite. Then (2) and (3) hold, and it is sufficient to
. >\; bet t!us implies (4) and (5) hold. To establish (4), letx, € T (x0) and
b given. Then by (3) there exists 5’ = (xy, x5, . . .) € Il(x,) such

w3') = v¥(x;) — €. Note, too, that x = (xo, xy, X9, . . .) € I(x). Hence
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it follows from (2) and Lemma 4.1 that

v*(x0) = u(x) = Flxo, 1) + Bulx’) = Flxo, x1) + Bv¥lxi) — Be.

Since & > 0 was arbitrary, (4) follows.
To establish (5), choose xo € X and & > 0. From (3) and Lemma 4.1, it

follows that one can choose x = (xo, X1, ...) € I(xo), so that
v¥(xo) < ulx) + € = Flxo, x1) + Bu(x’) + &,

where x' = (x), xg, . . .). It then follows from (2) that
v*(xo) =< F(xo, x1) + Bv*(x1) + &.

Since x; € I'(xo), this establishes (5).
If v*(xo) = +%, then there exists a sequence {x*} in TI(xo) such that

lim,..u(x*) = +«. Since »t € T'(xo), all k, and
u(@) = F(xo, &) + Bu(x'®) = Flxo, &) + pr*(), allk

it follows that (6) holds for the sequence {y* = »} in T(xo).
If v*(xo) = —, then

u(S) = F(xOv xl) + Bu(g') = —®, all (xO) X1y X2 - - ) =X € n(xO)’

where x' = (x), %, . . .). Since F is real-valued (it does not take on the
values — or +), it follows that

u(x’) = —, allx € T(x),ally € H(xy).

Hence v*(x;) = —, all x; € I'(xo). Since F is real-valued and 8 > 0, (7)
follows immediately. ®

The next theorem provides a partial converse to Theorem 42 It
shows that v* is the only solution to the functional equation that satisfies

a certain boundedness condition.

rHEOREM 4.3 Let X, T, F, and B satisfy Assumptions 4.1-4.2. If vise
solution to (FE) and satisfies
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8) ireﬁ"v(x,,) =0, all(xg,x),...)€ (xo), all x, € X,

then v = y*,

Proof. 1f (8) holds, then v cannot take on the values +® or ~». Hence

v satisfies (4) and (5), and it i . S
satisfies (2) and (3). is sufficient to show that this implies v

If v satisfies (FE), then (4) implies that for all x, € X and x € I(xy)
v(xo) = F(xo, x1) + Bu(x))

Z F(xo, x1) + BF(xy, x9) + B2u(xp)

= un(x) + B u(xnsy).

Taking the limit on the ri
satisfies (2).

To see that v satisfies 3), 1
S 3), let xo € X and € > 0 be gi
:quence {8.}a=1 in R, such that B 18, < €/2. Frogmv?g; 'Chfoosc s
at one can choose x; € I'(xo) so that t follows

ght as n - ® and using (8), we find that v

v(xo) =< F(xo, x;) + Bu(x;) + 8,
and choose x; € T (x1) so that

U(x1) < F(x), x9) + Bu(xg) + 6.
From these two inequalities it follows that

vx0) = F(xo, x1) + BF(x1, xg) + B*u(xg) + 8, + B8,.

%n * - - 3
tnuing in this way, one defines x = (xo, x,, Xo ) € H(x,) such that
R a

Ux0) < un(x) + B 0(xaen) + (8 + Bd; + ...+ B8,.)

S ua(x) + B (xae)) + €/2, n = L,2,....
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Since (8) implies that for n sufficiently large the second term is also less

than &/2, it follows that

v(xo) = un(x) + &, all n sufficiently large.

Since £ > 0 was arbitrary, it then follows that (3) holds. ®

It is an immediate consequence of Theorem 4.3 that the functional
as at most one solution satisfying (8).

we have established two main results about solutions to
(FE). Theorem 4.2 shows that v* satisfies (FE). The functional equation
may have other solutions as well, but Theorem 4.3 shows that these
“extraneous” solutions always violate (8). Hence a solution to (FE) that
satisfies (8) is v*. The following example is a case where (FE) has an

“extraneous” solution in addition to v*.
Consider a consumer whose objective function is simply discounted

consumption. The consumer has initial wealth xo € X = R, and he can
borrow or lend at the interest rate B! —1,whereB € (0, 1). There are
no constraints on borrowing, so his problem is simply

equation (FE) h
In summary,

L]
max 2 B

lepxyy Pizo =0
st. 0=¢=x — Bx+1, t=0,1,...,
xp given.
m function is obviously

Since consumption is unbounded, the supremu
v*(x) = +, all x. Now consider the recursive formulation of this prob-

lem. The return function is F(x,y) = x — B, and the correspondence
describing the feasible set is ['(x) = (-, B~'x]; so the functional equa-

tion is
v(x) = sup [x — By + Bv(y].
y<B'x -
The function v*(x) = + satisfies this equation, as Theorem 4.2 implies,

but the function v(x) = x does, too. But since the sequence x, = B~'%o,
t=0,1,...,is in II(xo), (8) does not hold and Theorem 4.3 does not

apply.
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Exercise4.3 LetX,T,F,and . )
be a solution to (FE) with ’ B satisfy Assumptions 4.1-4.2, Let v

lirr:jﬂup B"u(x,) = 0, allx, € X, all (xo,x,,...) € (o)

a. Show that v = y*,
y b_ Supp'osc; in addition that for each x, € X and x € Il(xp), there exists
¥' = (x0, x1, x3, . . .) € I(xg) such that lim,. B*u(x;) = 0 ’ d !
u(x). Show that v = v*, " and v =

" :)urdnext task is to_ characterize feasible plans that attain the optimum
theny o. Call a.feamble plan x € Il(xo) an optimal plan from xq if it attains’
i lsu;_n::rtnhum 1ln (SP), that is, if u(x) = v*(x). The next two theorems
al with the relationship between opti
! _ ptimal plans and those th i
the pollcy equation (1) for v = v*. The next theorem showo:eth y Sa_t'SfY
plans satisfy (1). opamal

l'rI l(-l x:)ob: Z L}e :;,:ze ,l).ZnXt,h‘l;t, F, qnd B satisfy Assumption 4.1—4.2. Let x* €
- attains the supremum in (SP) for initial state x,.
&) vH(x¥) = F(x¥, x%1) + Br*(xky), t=0,1,2,....
Proof. Since x* attains the supremum,

(10)  v*aF) = u(x*) = F (xo, x1) + Bu(x*")

Z u(x) = F(xo, 1) + Bu(x’), all x € M(x).
::r.[;:r;i::lflar), ethreI (ir:equalify holds for all plans with x, = x¥. Since
o VX3, . .. 1) implies that (xo, x¥, x, x3, . . .) € I(xo), it follows

ux*') = u(y’), ally € fix}).

Hence u(y*') = y(x} ituti
. ') = v(x{). Substituting this into (10) gives (9) for ¢ =
‘inuing by induction establishes (9) for all . .gl s (9) for t = 0. Con-
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i m 4.4. It
The next theorem provides a partial convers; e(tloe’:;hce:;;idon s
shows that any sequence satisfying (3) and a boundedn

optimal plan.
] ] —4.2. Let x* €
HEOREM 45 Let X, T, F,and B8 satisfy Assumﬂ;:ms 4.1-4.2. Let x
:I(m) be a feasible plan from xo satisfying (9), and wnt
1 *(x¥) < (.
(11) llm'_iupﬁ‘v (x¥)

Then x* attains the supremum in (SP) for initial state xo.

00] .

an induction on (9) that
V(%) = un(x®) + BrHlv*xt), n=12,....

’

ified to
The consumption example used after Theorem 4.3 can':e (;nl:iflore to
. € hy (11) is needed. Let preferences be as specihed © ¢ bt, 0
o y;x = F(%, x+1), all t. However, let us prohibit indebte:
- t+1 = ’ ’

that ¢, = % 0, all . Then in sequence form the problem is

ness by requiring x, =

max 2 B'(x; — Bxi+1)

teg1fmo =0

=1 = s e ey
st. 0<xy =B 'x t=01,

xo given.

i i biective function, it folloufs
If we cancel all of the offsetting terms in the obj Bty

-
immediately that the supremum fu.ncuon is vt . f;(:)
also clear that v* satisfies the functional equati

v*(x) = max [(x — By) t Bv*(y)], allx,
yE08 'x)

as Theorem 4.2 implies.
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Now consider plans that attain the optimum. Given any xo = 0, the set
of feasible plans I(x,) consists of the sequences

(%0, 0,0,0,...), (x, B 'x,0,0,...),
(x0, B7'x0, B %%, 0, . . ), etc.,

and all convex combinations thereof. Hence every feasible plan satisfies
(9). It is straightforward to verify that, as Theorem 4.5 implies, any plan
that satisfies (11) as well yields utility v*(xo) = x,. (Essentially, it does not
matter when consumption occurs as long as it occurs in finite time.) On
the other hand, the feasible planx, = B, ¢t = 0,1,...,(ineach period
invest everything and consume nothing) yields discounted utility of zero,
for all x = 0. For x > 0, however, it violates (11), so Theorem 4.5 does
not apply.

We will call any nonempty correspondence G: X — X, with G(x) C
I(x),allx € X, a policy correspondence, since the set G(x) is a feasible set of
actions if the state is x. If G is single-valued, we will call it a policy function
and denote it by a lowercase g If a sequence x = (xo, xy, . . .) satisfies
1 €Gx),t=0,1,2, ..., we wil say that x is generated from x, by G.
Finally, we will define the optimal policy correspondence G * by

G*®) = {y € T(x): v*(x) = F(x, 3) + Bu¥(y)}.
Then Theorem 4.4 shows that every optimal plan {x}} is generated from

G*, and Theorem 4.5 shows that any plan {x*} generated from G*—if, in
addition, it satisfies (11)—is an optimal plan.

4.2 Bounded Returns

In this section we study functional equations of the form

(1)) v(x) = max [F(x, y) + Buv(y1,
yET(x)

under the assumption that the function F is bounded and the discount
factor 8 is strictly less than one.

As above, let X be the set of possible values for the state variable; let I':
X~ X be the correspondence describing the feasibility constraints; let
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fT; let F:A— R be the
= € X X X:y € I'(x)} be the graph of I’; _

fctu:t(\x,fﬂ)nction' andylet B = 0 be the discount factor. Throughout (;hls
section, we will impose the following two assumptions on X, T, F, and B.

ASSUMPTION 43 X is a convex subset ofR‘, and the correspondence T':
X — X is nonempty, compact-valued, and continuous.

ASSUMPTION 44 The function F: A — R is bounded and continuous, and
0<B<I

It is clear that under Assumptions 4.3-4.4, A.ssumpuons 4;;44.2 23:::
so the sequence problem corresponding to (1)is well.deﬁne - orcm (1;
Theorems 4.2-4.5 imply that under these assump%nons soluuon[s o)
coincide exactly—in terms of both values and optimal plans—to
i e problem. .
UO;;: i::ﬁ;i‘;lr‘::: thgt X be a subset of a finite-dimensional Euchde?r;
space could be relaxed in much of what fqllows, but at the e:fpen(s; ec:al 1
substantial additional investment in tcrmmo‘logy .and notauog. <l
that the definitions of u.h.c. and Lh.c. p'rov1dcd in Ch::npterh app ';he
only to correspondences from one Euclidean space to anl(.)(ti er.) he
reader who is interested in applications where X is nota l:Zuc idean sp ;
should note, however, that most of the arguments in this section apply
l ’ . .
mllnf:l;?so:cb:::iidt{,)r |F (x, )|, then the supremum function v* s.:msﬁfs
[v*(x)] = B/(1 — B),allx € X. In this case itis natural_ to set?k soluuonsilﬁ
(1) in the space C(X) of bounded continuous funcu9ns f:X ;—» .R, (;v(x)
the sup norm: |f]l = supexlf(x)|. Clearly, any soluuc.m to (1) in e
satisfies the hypothesis of Theorem 4.3 and hence is the s:p;c o
function. Moreover, given a solution v € C(X) to (1), we can define

policy correspondence G: X — X by
) G(x) = {y € T(x): v(x) = F(x,y) + Bv(y)},

and Theorems 4.4 and 4.5 imply that for any %o €X a sequence {#}
attains the supremum in the sequence problem if and only if it is gener-

by G.
ate'l("iheyrest of the section proceeds as follows. Define the operator T on

C(X) by

= F(x,y) + Bf (%)
@) (Tf)) ,‘2&’,‘[ () +Bf(y
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s0 (1) becomes v = Tv. First, if we use only the boundedness and conti-
nuity restrictions in Assumptions 4.3 and 4.4, Theorem 4.6 establishes
that T: C(X) = C(X), that T has a unique fixed point in C (X ), and that
the policy correspondence G defined in (2) is nonempty and u.h.c. Theo-
rem 4.7 establishes that under additional monotonicity restrictions on F
and I, v is strictly increasing. Theorem 4.8 establishes that under addi-
tional concavity restrictions on F and convexity restrictions on T, v is
strictly concave and G is a continuous (single-valued) function. Theorem
4.9 shows that if {v,} is a sequence of approximations defined by v, =
T™vo, with v, appropriately chosen, then the sequence of associated pol-
icy functions {g,} converges uniformly to the optimal policy function g

given by (2). Finally, Theorem 4.11 establishes that if F is continuously
differentiable, then v is, too.

THEOREM 4.6 Let X, I, F, and B satisfy Assumptions 4.3 and 4.4, and let
C(X) be the space of bounded continuous functions f: X — R, with the sup norm.
Then the operator T maps C(X) into itself, T: C(X) »> CX); Thas a unique
fixed pornt v € C(X); and for all vy € C(X),

4) IT*v0 — o}l = BHvo - o], n=20,1,2....

Moreover, given v, the optimal policy correspondence G: X — X defined by (2) is
compact-valued and u.h.c.

Proof. Under Assumptions 4.3 and 4.4, for each fE€C(X)and x € X,
the problem in (3) is to maximize the continuous function [F(x, ) +
Bf(*)] over the compact set I (x). Hence the maximum is attained. Since
both F and f are bounded, clearly Tf is also bounded; and since F and f
are continuous, and I is compact-valued and continuous, it follows from
the Theorem of the Maximum (Theorem 3.6) that Tf is continuous.
Hence 7: C(X) —» C(X).

Itis then immediate that T satisfies the hypotheses of Blackwell’s suffi-
cient conditions for a contraction (Theorem 3.3). Since C(X) is a Banach
space (Theorem 3.1), it then follows from the Contraction Mapping
Theorem (Theorem 3.2), that T has a unique fixed point v € C(X), and

(4) holds. The stated properties of G then follow from the Theorem of
the Maximum, applied to (1). =

It follows immediately from Theorem 4.3 that under the hypotheses

of Theorem 4.6, the unique bounded continuous function v satisfying




80 4 | Dynamic Programming under Certainty

emum function for the associated sequence problem. That
is, Theorems 4.3 and 4.6 together establish that under Assumptions 4.3~
4.4 the supremum function is bounded and continuous. Moreover, it
then follows from Theorems 4.5 and 4.6 that there exists at least one
optimal plan: any plan generated by the (nonempty) correspondence G

(1) is the supr

is optimal.

To characterize v and G more shar
about F and T. The next two results show how Corollary 1 to the Con-
Theorem can be used to obtain more precise charac-

ply, we need more information

traction Mapping
terizations of v and G.

ASSUMPTION 4.5 Foreachy, F(-, y) is strictly increasing in each of its first |
arguments.

ASSUMPTION 4.6 T is monotone in the sense that x < x' implies I'(x) C
I'(x").

THEOREM 4.7 Let X, T, F, and B satisfy Assumptions 4.3—4.6, and let v be
the unique solution to (1). Then v is strictly increasing.

Proof. Let C'(X) C C(X) be the set of bounded, continuous, nonde-
creasing functions on X, and let C"(X) C C'(X) be the set of strictly in-
creasing functions. Since C'(X) is a closed subset of the complete metric
space C(X), by Theorem 4.6 and Corollary 1 to the Contraction Mapping
Theorem (Theorem 3.2), it is sufficient to show that T[C'(X)] € C"(X).

Assumptions 4.5 and 4.6 ensure that this is so. @
AsSUMPTION 4.7 F is concave; that is,
F8(x, y) + (1 = O)x',y)] = OF (x,5) + (1 = OF (', 5),
all (x, ), (*',y') €A, and allé € (0, 1).
In addition, the inequality is strict if x # x'.

ASSUMPTION 4.8 T is convex in the sense that for any 0 < 6 = 1, and
x,x €X, )

yET(x) and y €T(’) implies

oy + (1 — 8y €T[6x + (1 - O)x'].
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Assumpti impli
s ption 4.8 implies that for each x € X, the set I'(x) is convex and
e are “ : »»” T ’
No “increasing returns.” Note that since X is convex Assump

tion 4.8 is equivalent to i
convex. assuming that the graph of T (the set A) is

T .
HEOREM 48 LetX, T, F, and 8 satisfy Assumptions 4.3—4.4 and 4.7

4.8; let v satisfy (1); and let G sati
’ F4 - .
continuous, single-valued fumﬁ:""sfy (2)- Then v is strictly concave and G is a

Pr !
Concgtz’fe. fi.t:c t(;‘ (X) C C(X) be the set of bounded, continuous, weakly
e e on; onX, ’and 'let C"(X) C C’(X) be the set of strictly con-
e G0 s'.rhmce C'(X) is a closed subset of the complete metric
it » by Theorem 4.f3 z?nd Corollary 1 to the Contraction Mappin
rem. (Theorem 3.2), it is sufficient to show that T[C’ P'P ¥
To verify that this is so, let fE C'(X) and let i e,

#¥x, 6€(0,1), and x, = Oxo + (1 — O)x,.

Let 3, € I'(x) attain (T/)(s), for i
s 1) =0, 1. Then by A . _
&o + (1 — 6)y, € I'(x). It follows that y Assumption 4.8, y, =

(Tf )xe) = F(xq, y6) + Bf(ys)
> 6[F (xo, yo) + Bf(y0)] + (1 — O)F (x1, y1) + Bf(y)]
= (Tf)(x0) + (1 — O(TN)(xy),

::;c;‘le thehﬁrft line uses (3) and the fact that y, € I'(x); the second uses
o mz[:;to es;s;hat (j; 1; concave and the concavity restriction on F in
n 4.7; and the last follows fr h
e | > trom the way yo and y, were se-
g Since xo and x) were arbitrary, it follows that Tfis stricti l conce "
Hsmce f was arbitrary, that T[C'(X)) c C"(X) ! e

e . 3 . - )

coml‘l’:e(;he unique fixed point v is strictly concave. Since F is also

R <5 -ssfurlnptmn 4.7) and, for each x € X, I'(x) is convex (Assump-

e .H,e rlltceoclo.ws th.at :he maximum in (3) is attained at a uniquepy
. 1s a single-valued function. Th inui

3 on. The cont

ollows from the fact that it is u.h.c. (Exercise 3.11) " :‘““Y o G then

Th .
€orems 4.7 and 4.8 characterize the value function by using the fact

that th,
€ operator T preserves certain properties. Thus if vy has property
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P and if P is preserved by T, then we can conclude that each function in
the sequence {T"vo} has property P. Then, if P is preserved under uni-
form convergence, we can conclude that v also has property P. The same
general idea can be used to establish facts about the policy function g,
but we need to establish the sense in which the approximate policy
functions—the functions g, that attain T"v,—converge to g. The next
result draws on Theorem 3.8 to address this issue.

THEOREM 4.9 (Convergence of the policy functions) Let X, T, F, and B satisfy
Assumptions 4.3—4.4 and 4.7-4.8, and let v and g satisfy (1) and (2). Let c'X)
be the set of bounded, continuous, concave functions f: X — R, and let vo €

C'(X). Let {(vn, gn)} be defined by

Ups1 = Tve, n=0,1,2,..., and

ga(x) = argmax [F(x,y) + Bua()), n = 0,1,2,....
el

Then g, — g pointwise. If X 1s compact, then the convergence is uniform.

Proof. Let C"(X) C C'(X) be the set of strictly concave functions
f:X—> R As shown in Theorem 4.8, v € C"(X). Moreover, as shown in
the proof of that theorem, T[C'(X)] € C"(X). Since vo € C '(X), it then
follows that every function ve, 7 = 1,2,...,is strictly concave. Define

the functions {f,} and f by
falx,y) = F(x,5) + Bv.(y), n=12,..., and

fx,y) = F(x, 5 + Bu(y-

Since F satisfies Assumption 4.7, it follows that each function fon=1
2,...,is strictly concave, as is f. Hence Theorem 3.8 applies and the

desired results are proved. ®

The next exercise establishes a related convergence result
useful for computational purposes.

Exercise 4.4 Let X, T, F, and B satisfy Assumptions 4.3-4.4 and
4.7-4.8, and let C(X) be as given above. Let H be the set of continuous

that is often
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functions k: X = X such th
. at hix) €T
fine the operator T} on C ) b)(r ) (), all x € X. For any k € H, de-

(Taf)x) = Flx, h(x)] + Bflh(x)).

a. Show that T,: C(X) - C(X): i
o Show e C(X)fX), that T} is monotone; and that T,is a
Le . .
. wt ﬁi tEhH be given, and c9nsnder the following algorithm. Given &,
n € unique fixed point of T},. Given w,, consider the problem’

fax (F(x, 5) + Bwa(y)).

F

c. Show that the sequence of functi
: unctions {w, i
solution to (1). [Hint. Show that wy < Tw(f s};}?nsvc;‘fzesio X d;e e
1=....
A . .
Tn _a:)gor;tltlm b;sed on-Exerase 4.4 involves applying the operators
T,:_) nly;i):fi e:lrs t :t rseqmre no maximization—repeatedly and applying
uently. Since maximization is usuall i
: th i

th:)se computations, the savings can be considera);)le s ipensesiepn

¢ an:; thle ;xnstence of a unique solution v € ¢ (X) to the functional
;qmblc nrll i(n )thaatsel;eer:. established, we would like to treat the maximu;

uation as an ordina i

N ry programming problem

e standard methods of calculus to characterize thegpl:)licy funirtlignu;e

p ’ eq

u(x) = ors!;:;;){U[f(x) = 5] + Bu(y)}.

If we i i

B l;)n“e)vl:l :hat.v was differentiable (and that the solution to the maxi-

E m in ( I? was always interior), then the policy function
given implicitly by the first-order condition ¢

B Ul - g) - Bv'ge)] = 0.

Moreover, i
s be' :::2 ll.(t;lcw that v was twice differentiable, the monotonicity of
ished by differentiating (5) with respect to x and chm-




